doi: 10. 6046/gtzyyg. 2012. 04. 15

# 水蚀荒漠化信息自动提取方法研究

葛 佳<sup>1</sup>,张子鸣<sup>2</sup>,吴 成<sup>3</sup>,詹 骞<sup>3</sup>,孙永军<sup>4</sup>
(1.中国地质大学 武汉 430074; 2.中国冶金地质总局西北局 西安 710119;
3.中国地质大学 北京 100083; 4.中国国土资源航空物探遥感中心 北京 100083)

摘要:针对黄土高原地区水蚀荒漠化较为严重这一问题,建立了一套基于 ETM<sup>+</sup>遥感数据和地理信息系统的水蚀 荒漠化信息自动提取的技术方法体系,并对其信息提取精度进行了评价。该方法以 NDVI(归一化植被指数)、KT3 (KT 变换后的湿度信息)、slope(坡度)、DEM(高程)及典型地物光谱数据作为水蚀荒漠化分类的特征波段 构建了 决策树分类规则,有效剔除了研究区非水蚀荒漠化信息;引入面向对象多尺度分割技术,以坡度(slope)、沟谷密度 (gully density)和植被覆盖度(vegetation coverage)等作为水蚀荒漠化程度分级的特征波段 通过层次分析法(analytic hierarchy process)确定特征波段的分割权重,实现了水蚀荒漠化程度的分级。该方法提取结果与目视解译结果 的总体一致性为 82.8%。

关键词:水蚀荒漠化;信息提取;面向对象;层次分析法 中图法分类号:TP 79 文献标志码:A 文章编号:1001-070X(2012)04-0088-07

### 0 引言

荒漠化概念的提出距今已有半个世纪。半个世纪 以来 众多学者对此问题进行了大量的研究,主要集中 在对干旱、半干旱区水蚀荒漠化的发生原因<sup>[1]</sup>、影响因 素<sup>[2]</sup>、动态监测<sup>[3]</sup>、危害评估和防治措施<sup>[4]</sup>等方面,而 针对水蚀荒漠化的研究则相对较少。《联合国关于在 发生严重干旱和/或沙漠化的国家特别是在非洲沙漠 化的公约》<sup>[5]</sup>对水蚀荒漠化的定义为:流水作用下的 荒漠化土地,由于人为活动、气候等因素造成地表植被 破坏从而导致严重的流水侵蚀,使土地生产力严重下 降直至丧失,出现以劣地或石质坡地为标志的土地严 重退化。目前水蚀荒漠化的研究多注重侵蚀预测预报 模型<sup>[6]</sup>、侵蚀机理和原因以及小流域综合治理模式<sup>[7]</sup> 等方面,而应用遥感和 GIS 手段自动提取水蚀荒漠化 信息<sup>[8-9]</sup>进而研究区域水蚀荒漠化空间格局<sup>[10-11]</sup>,并 对其进行动态监测<sup>[12]</sup>的成果则较少。

王香鸽等<sup>[9]</sup>探讨了"3S"技术在水蚀荒漠化研 究中的具体应用方法,完成了黄土高原水蚀荒漠化 现状图的制作;周忠学等<sup>[11]</sup>基于 MapGIS 平台和遥 感图像资料,通过对黄土高原水蚀荒漠化特点、成因 和产生机制的探讨,提出了针对典型区域的防治模 式。本次研究以黄土高原地区为例,结合水蚀荒漠 化定义和与非水蚀荒漠化提取要素的对比,加入湿 度因子(KT 变换后的湿度变量 KT3),并系统探讨 了水蚀荒漠化信息自动提取的技术方法。

### 1 研究区概况与数据源

#### 1.1 研究区概况

研究区介于 N38°15′00″~39°15′00″ E110°40′00″~ 112°13′30″之间,包括了吕梁山西北、毛乌素沙漠以东 的区域,西部为黄土高原丘陵沟壑区(图1)所示。



图 1 研究区 ETM<sup>+</sup>7(R) A(G) 3(B) 假彩色合成图像 Fig. 1 ETM<sup>+</sup>7(R) A(G) 3(B) false color composit image of study area

受新生代喜山运动抬升的影响,上覆第四系形 成了现代黄土丘陵与山地地貌。由于其岩性软弱, 侵蚀切割严重,沟谷系统非常发育。在现代沟谷下 切强烈的地方,受地下水的浸泡和润滑,水蚀荒漠化 程度严重。区内平均海拔约1370m;发育的一二 级河流主要有黄河、汾河。经过漫长的自然侵蚀和

基金项目:中国地质调查局"黄河流域基础地质环境遥感调查与监测"项目(编号:1212010510512)资助。

收稿日期: 2012-03-20; 修订日期: 2012-08-21

人类扰动 ,其土壤贫瘠 ,水土流失严重 ,生态环境十 分脆弱 ,为全球水蚀荒漠化最严重的地区之一。

1.2 数据源及数据处理

本研究所用数据包括: ETM<sup>+</sup>图像1景,数据接 收日期为2002年7月; SRTM 高程数据(90 m 分辨 率)6幅;1:5万比例尺地形图28幅; 水蚀荒漠化 人工目视解译成果1份。

对 ETM<sup>+</sup>图像进行高保真光谱融合处理;采用 SRTM 数据对融合后的图像进行正射校正;结合 1:5万比例尺地形图和选取的地面控制点,运用二 次线性内插法对图像进行几何纠正,最后得到的图 像纠正精度为 20 m。

2 水蚀荒漠化信息自动提取

本研究所建立的水蚀荒漠化信息自动提取工作 流程如图 2 所示。



该流程主要包括"基于决策树的水蚀荒漠化区 域分离"和"面向对象的水蚀荒漠化程度分级"2 部 分内容 辅以数据预处理、特征波段选择及多特征空 间<sup>[13]</sup>的建立、层次分析法、面向对象分类规则等多 元数据处理方法。根据植被盖度、沟谷密度和坡度 3 个评价指标 构建一套较为完善的1:25 万比例尺 的水蚀荒漠化信息自动提取方法体系。

2.1 基于决策树的水蚀荒漠化区域分离

本研究在分析黄土高原研究区典型地物光谱特 征的基础上,提出了一种全新的水蚀荒漠化信息决 策树分离体系。即以 NDVI,KT3,slope,DEM 及典 型地物光谱数据共同构成研究区的特征波段(如图 3 所示),进而构建决策树分类规则。



图 3 研究区特征波段组合 Fig. 3 Characteristic bands in study area

具体做法是:通过典型地物的光谱特征确定研 究区内所包含的典型地物类型;利用二维散点图和 交互式分析功能确定各种地物类型在 NDVI,KT3, slope 以及 DEM 特征空间的分布阈值,进而确定用于 区别水蚀荒漠化信息和非水蚀荒漠化信息的阈值。

研究区各特征波段的产生过程及其意义:①ND-VI 为归一化植被指数,由 ETM<sup>+</sup>相关波段计算产 生<sup>[14]</sup>,主要为后续分类提供植被信息;②KT3 为 ETM<sup>+</sup>数据经过 KT 变换(缨帽变换)后的第 3 分 量<sup>[14]</sup>,主要为后续分类提供湿度信息;③slope 为通 过 ENVI 软件中的 Topographic Modeling 模块对 DEM (本文所用数据为 3S 分辨率的 SRTM 高程数据)进行 三维分析得到,主要为后续分类提供坡度信息;④ DEM 为由收集到的 SRTM 数据经坐标转换后形成的 数字高程数据,主要为后续分类提供高程信息。

本研究运用 ENVI 软件中的决策树分类工具实 现了水蚀荒漠化区域的分离。分离过程主要包括以 下4个步骤:

1) 数据处理及特征波段的确定;

2) 建立决策树分类规则;

3) 使用决策树规则提取水蚀荒漠化信息;

4) 分类后处理。

其中, '建立决策树分类规则"和"使用决策树规则提取水蚀荒漠化信息"2个步骤组成了一个循环体,目的在于可以实时完善水蚀荒漠化信息提取的决

策树规则 从而达到最优效果。最终建立的分离水蚀

荒漠化区域决策树体系如图4所示。





Fig. 4 Separation decision - tree system of water - erosion desertification area

研究区内水蚀荒漠化信息提取过程如图5所示。





(d) 水蚀、非水蚀荒漠化信息掩模结果

(c) 水蚀荒漠化信息决策树分类结果

图 5 研究区水蚀荒漠化信息提取过程 Fig. 5 Water – ersoion desertification information extraction process

该方法的优点在于:①此种分类规则体系对地 物的分类具有很好的系统性 能让分析人员清楚地把 握决策树的分类规则 而不用考虑波段的选择及多种 地物的光谱曲线差别;②融合光谱、植被指数、湿度、 高程及坡度等多种数据建立多特征波段 丰富了研究 区信息;③以地物光谱特征为依据建立的这种方法 具有可重复性。 2.2 面向对象的水蚀荒漠化程度分级

面向对象信息提取技术<sup>[15-16]</sup>以相同特征上"同 质均一"的图块对象为基本分析单元,并综合考虑了 地物的光谱特征、纹理特征和空间关系等,在图像分 割后对对象采用智能计算模型进行地物提取和分类, 其信息提取精度更高。这对于具有丰富空间特征信 息的水蚀荒漠化信息的提取具有很好的适用性。相 对于单个像素 研究区基于多种特征空间分割后的均 质影像对象可生成大量的地物新信息 除光谱特征 外 还具有形状、纹理、植被覆盖度、坡度、沟谷密度和 尺度相关特征等语义信息。

第4期

本次研究采用 eCognition Developer 软件<sup>[17]</sup>的面 向对象分类功能实现了水蚀荒漠化程度的分级。该 过程主要包括以下 5 个步骤:

1)多特征波段的构建。本次研究水蚀荒漠化程度以植被覆盖度、坡度和沟谷密度作为分级指标。因此在进行面向对象分类之前需建立以植被覆盖度、坡度和沟谷密度构成的多特征空间。

植被覆盖度为影像分割对象的 NDVI 平均值。

坡度由经过面向对象多尺度分割后的各个影像 对象的平均坡度值构成。

沟谷密度是指在一个特定的区域内,地表单位面 积内沟谷的总长,数学表达式为:  $D = \sum L/A(D)$ 为沟 谷密度  $km/km^2$ ;  $\sum L$ 指特定区域面积内的沟谷总长 度 km; A指特定区域面积,  $km^2$ )。研究区沟谷密度 空间的建立是基于研究区的 DEM 数据,通过水文分 析<sup>[18]</sup>等多种分析技术实现。

2) 特征波段权重的确定。采用 Saaty<sup>[19]</sup>提出的 比较标度法 对去除了非水蚀荒漠化信息的特征波段 进行两两比较 得出特征波段重要性标度(表1)。

|        | 表1 特征波段重要性标度                            |    |
|--------|-----------------------------------------|----|
| Tab. 1 | Importance scale of characteristic band | ls |

|       | •     |     |      |
|-------|-------|-----|------|
| 特征波段  | 植被覆盖度 | 坡度  | 沟谷密度 |
| 植被覆盖度 | 1     | 4   | 6    |
| 坡度    | 0.25  | 1   | 2    |
| 沟谷密度  | 0.167 | 0.5 | 1    |

由表1构建的判断矩阵为

$$B = \begin{pmatrix} 1 & 4 & 6 \\ 0.25 & 1 & 2 \\ 0.167 & 0.5 & 1 \end{pmatrix},$$
 (1)

进而 采用和积法计算准则层各元素的排序权重, 并通过一致性检验 最终得出植被覆盖度、坡度及沟谷 密度等特征波段的权重依次为0.70 0.19 和0.11。

3)面向对象的多尺度分割。面向对象应用的 一个前提条件是保证影像多尺度分割后产生的对象 在绝大部分区域内由一种地物占主要地位。由于遥 感图像上丰富的空间结构信息和地理特征信息提取 需要在多种不同的尺度下进行,因此面向对象应用 成功与否的关键在于对图像分割的合理性。因此, 在分割程序执行中,除设置尺度参数控制的阈值外, 还需通过设置每个图像层的权值、光谱(颜色)、形 状异质性计算的权值、紧密度和平滑度的权值等参 数来控制分割算法的分割结果。

对参与水蚀荒漠化程度分级的特征波段分别进 行分割尺度为 100,60,30,15 等 4 次分割实验。相 比较而言,100 分割尺度下的分割对象过于粗略,15 分割尺度下的分割对象过于细碎。这 2 种分割尺度 都不利于影像特征的分割和影像对象的进一步分 类。经过综合分析后认为,采用 30 作为分割尺度得 到的影像对象不仅能很好地集合各种特征,而且有 利于下一步的对象分类。相对而言,颜色指数(color)和形状指数(shape)略为次要,赋值 0.3;表面复 杂度指数(compactness)采用默认阈值 0.5。

因此,在面向对象多尺度分割技术中,各特征波 段权重值(image layer weight)分别为: 植被覆盖度 为 0.70,坡度为 0.19,沟谷密度为 0.11;分割尺度 为 30;形状指数为 0.3;表面复杂度指数为 0.5。 研究区去除了非水蚀荒漠化信息的面向对象多尺度 分割结果如图 6 所示。



图 6 研究区面向对象的多尺度分割结果 Fig. 6 Object – oriented muti – scale segmentation result of study area

4) 水蚀荒漠化程度分级。通过分析各特征波段 直方图的连续统去除曲线,有助于把握研究区的特征 分布,便于水蚀荒漠化程度分级中的各项阈值设定。

从特征波段直方图的连续统去除曲线得知,植 被覆盖度特征波段(NDVI)的阈值集中在(-0.5, 0.5)之间,在-0.125 阈值附近具有最大频率;坡 度特征波段的阈值在(10,20)之间具有最高的频 率;沟谷密度特征波段的阈值集中在(1,3)之间。 在进行多次实验后得知,NDVI > 0的影像对象水蚀 荒漠化程度低,NDVI < -0.13的影像对象水蚀荒漠 化程度高, $-0.13 \le NDVI \le 0$ 的影像对象则具有中 等水蚀荒漠化程度。

基于此 通过循环试验 逐步确定面向对象的分类 规则 最终实现水蚀荒漠化程度的分级 如图7 所示。





5) 分类后处理。分类后处理主要遵循"相同地 物具有空间分布的连续性特征"这一基本规律,建 立相应的计算规则,对信息自动提取结果中存在的 碎屑多边形进行消除,使得分类结果更贴近实际 情况。

### 3 精度评价

#### 3.1 一致性评价

将计算机自动提取结果与目视解译分级结果进 行叠加分析 构建二者之间关系(表2、表3)。

#### 表2 研究区水蚀荒漠化自动提取与目视解译面积一致性分析

 

 Tab. 2
 Water – erosion desertification area consistency analysis between automatic extraction and visual interpretation of study area

 (km<sup>2</sup>)

| ᇦᆁᇷᇗᇰ |       | 自己  | 边提取   |       |
|-------|-------|-----|-------|-------|
| 日忱胜咩  | 非水蚀   | 轻度  | 中度    | 重度    |
| 非水蚀   | 4 533 | 205 | 216   | 117   |
| 轻度    | 76    | 796 | 208   | 92    |
| 中度    | 83    | 416 | 4 862 | 471   |
| 重度    | 18    | 170 | 653   | 2 937 |

## 表3 研究区水蚀荒漠化自动提取与目视解译百分比一致性分析

Tab. 3 Water – erosion desertification percentage consistency analysis between automatic extraction and

|                 | visual interpretation of study area |  |  |  |
|-----------------|-------------------------------------|--|--|--|
| \$7 <b>\$</b> 7 | 自动提取                                |  |  |  |
| 推印              |                                     |  |  |  |

| 口加密之   |      | H4   | 顶积   |      |
|--------|------|------|------|------|
| 日122時時 | 非水蚀  | 轻度   | 中度   | 重度   |
| 非水蚀    | 89.4 | 4.0  | 4.3  | 2.3  |
| 轻度     | 6.5  | 67.9 | 17.8 | 7.8  |
| 中度     | 1.4  | 7.1  | 83.4 | 8.1  |
| 重度     | 0.5  | 4.5  | 17.3 | 77.7 |

从表 2、表 3 可见,对于非水蚀荒漠化区域,计 算机自动提取结果与目视解译结果的一致性最高, 达到 89.4%;中度水蚀荒漠化与重度水蚀荒漠化一 致性次之,分别为 83.4%和 77.7%;轻度水蚀荒漠 化一致性最低,为 67.9%。计算机自动提取结果与 目视解译结果相比的一致性达到了 82.8%,且二者 之间保持了良好的线性关系,分级结果也基本能够 反映研究区内水蚀荒漠化的真实情况。

3.2 精度评价分区图及差异分析

将黄土高原实验区内目视解译分级结果与计算 机自动提取结果进行叠加和属性归并;对叠加结果 进行赋色,形成精度评价分区图(图8)。使用该图 可对两者之间的差异进行精细分析。





从图 8 可知,目视解译和计算机自动提取结果 存在一定的差别,主要表现在对水蚀荒漠化程度分 级的不同:目视解译受解译人员经验以及遥感影像 本身质量的影响会存在误差;计算机自动提取受分 类指标和算法等因素的影响也会使结果发生偏差。

### 4 结论

本文在国内外荒漠化信息提取研究的基础上, 通过实验研究 取得了以下主要认识和成果:

 1) 创建了一种全新的水蚀荒漠化信息提取决 策树分类体系。该体系通过建立研究区的多个特征 波段 构建了决策树分类规则 较好地剔除了非水蚀 荒漠化信息。

2)将层次分析法引入面向对象多尺度分割工 作,以层次化、数量化、模型化的数学手段代替人的 决策思维,使得分割依据更加可靠。

3)建立起一套新的水蚀荒漠化信息提取工作
 流程:通过决策树方法剔除非水蚀荒漠化信息;使
 用面向对象分类技术对水蚀荒漠化程度进行分级。

#### 参考文献(References):

- [1] 王效科 欧阳志云,肖 寒,等.中国水土流失敏感性分布规律 及其区划研究[J].生态学报 2001 21(1):14-19.
  Wang X K, Ouyang Z Y, Xiao H, et al. Distribution and Division of Sensitivity to Water - caused Soil Loss in China[J]. Acta Ecologica Sinica, 2001, 21(1): 14 - 19(in Chinese with English Abstract).
- [2] 张 宏 林先成,李世强.荒漠化评价指标体系的等级系统研究
  [J].四川师范大学学报:自然科学版 2005 28(3):358-361.
  Zhang H, Lin X C, Li S Q. Studies on Hierarchical System of Desertification Assessment Index System [J]. Journal of Sichuan Normal University: Natural Science Edition, 2005, 28(3): 358 361(in Chinese with English Abstract).
- [3] 吴波苏志珠杨晓晖,等.荒漠化监测与评价指标体系框架[J].林业科学研究 2005,18(4):490-496.

Wu B , Su Z Z , Yang X H , et al. A Framework of Indicator System for Desertification Monitoring and Evaluation [J]. Forest Research ,2005 ,18 (4): 490 – 496 ( in Chinese with English Abstract) .

- [4] 李秀彬,马志尊,姚孝友,等.北方土石山区水土流失现状与综合治理对策[J].中国水土保持科学 2008 6:9-15.
  Li X B, Ma Z Z, Yao X Y, et al. Current Status and Comprehensive Control Strategies of Soil Erosion for Rocky Mountain Areas in the Northern China[J]. Science of Soil and Water Conservation, 2008, 6(1): 9-15( in Chinese with English Abstract).
- [5] 中华人民共和国林业部防治沙漠化办公室.联合国关于在发 生严重干旱和/或沙漠化的国家特别是在非洲防治沙漠化的 公约[M].北京:中国林业出版社,1994.

Combating Desertification of the People's Republic of China Min-

istry of Forestry Office. Elaboration of an International Convention to Combat Desertification in Experiencing Serious Drought and or Desertification Particularly in Africa [M]. Beijing: China Forestry Publishing House, 1994( in Chinese).

- [6] 傅伯杰, 汪西林. DEM 在研究黄土丘陵沟壑区土壤侵蚀类型和 过程中的应用[J]. 水土保持学报,1994 8(3):17-21.
  Fu B J, Wang X L. The Application of DEM in Studying Soil Erosion Type and Process in the Loess Hilly and Gully Area[J]. Journal of Soil and Water Conservation, 1994,8(3):17-21(in Chinese with English Abstract).
- [7] 陈志清.福建省长汀县河田镇的水蚀荒漠化及其治理[J].地 理科学进展,1998,17(2):65-70.
  Chen Z Q. Desertification Induced by Water Erosion and its Combat of Hetian Town in Changding County, Fujian Province [J].
  Journal of Progress in Geography, 1998,17(2):65-70(in Chinese with English Abstract).
- [8] 王 建,董光荣,李文君,等.利用遥感信息决策树方法分层提 取荒漠化土地类型的研究探讨[J].中国沙漠,2000,20(3): 243-247.

Wang J , Dong G R , Li W J , et al. Primary Study on the Multi – layer Remote Sensing Information Extraction of Desertification Land Types by Using Decision Tree Technology [J]. Journal of Desert Research , 2000 , 20(3): 243 – 247( in Chinese with English Abstract) .

- [9] 王香鸽 孙 虎 李智佩 ,等. "3S"技术在水蚀荒漠化研究中的应用[J]. 水土保持学报 2003 ,17(4):82-85.
  Wang X G , Sun H , Li Z P , et al. Waterpower Desertification in Loess Plateau Region by Using 3S Technology[J]. Journal of Soil and Water Conservation , 2003 , 17(4): 82-85( in Chinese with English Abstract).
- [10] 黄土高原地区资源与环境遥感系列图编委会. 黄土高原地区 资源与环境遥感调查和系列制图研究[M]. 北京: 地震出版 社,1992.

Resources and Environment Remote Sensing Series of Figure Editorial Board in Loess Plateau. Resources and Environmental Remote Sensing Investigation and a Series of Mapping Studies in the Loess Plateau [M]. Beijing: Seismological Press, 1992( in Chinese).

- [11] 周忠学 孙 虎 李智佩. 黄土高原水蚀荒漠化发生特点及其防治模式[J]. 干旱区研究 2005 22(1):29-34.
  Zhou Z X, Sun H, Li Z P. Study on Mechanism of Water eroded Desertification and its Control in the Loess Plateau[J]. Arid Zone Research, 2005, 22(1): 29 34(in Chinese with English Abstract).
- [12] 高志海 魏怀东,丁 峰. 基于 3S 技术的荒漠化监测技术系统研究[J]. 遥感技术与应用 2002 ,17(6):330-336.
  Gao Z H, Wei H D, Ding F. Study on Desertification Monitoring System Based on Remote Sensing, GIS and GPS [J]. Remote Sensing Technology and Application, 2002, 17(6): 330-336(in Chinese with English Abstract).
- [13] 杨 桄,刘湘南,张 柏,等.基于多特征空间的遥感信息自动提 取方法[J].吉林大学学报:地球科学版 2005,35(2):257 – 260.

Yang G , Liu X N , Zhang B , et al. An Automatic Extraction Method of Remote Sensing Information Based on Multi – characters Space[J]. Journal of Jilin University: Earth Science Edition , 2005, 35(2): 257-260(in Chinese with English Abstract).

[14] 汤国安 涨友顺 刘咏梅 等. 遥感数字图像处理[M]. 北京: 科学出版社 2003.
 Tang G A , Zhang Y S , Liu Y M , et al. Remote Sensing Digital

Image Processing [M]. Beijing: Science Press, 2003 ( in Chinese).

- [15] 陈云浩、冯通、史培军.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报:信息科学版 2006 31(4):316-320. Chen Y H, Feng T, Shi P J, et al. Classification of Remote Sensing Image Based on Object Oriented and Class Rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 316-320(in Chinese with English Abstract).
- [16] 孙永军,童庆禧,秦其明.利用面向对象方法提取湿地信息[J].国土资源遥感 2008(1):79-82.

Sun Y J , Tong Q X , Qin Q M. The Object – oriented Method for Wetland Information Extraction [J]. Remote Sensing for Land and

Resources , 2008 , 19(1): 79 – 82( in Chinese with English Abstract) .

[17] 牛春盈 江万寿,黄先锋,等.面向对象影像信息提取软件 Feature Analyst 和 eCognition 的比较 [J]. 遥感应用,2007,2: 66-70.

Niu C Y , Jiang W S , Huang X F , et al. Analysis and Comparison Between two Object – oriented Information Extraction Software of Feature Analyst and eCognition [J]. Remote Sensing Information , 2007(2): 66 – 70( in Chinese with English Abstract).

- [18] 汤国安 杨 昕. ArcGIS 地理信息系统空间分析实验教程[M]. 北京:科学出版社 2006.
  Tang G, Yang X. The Spatial Analysis Experimental Tutorial of a Geographic Information System Called ArcGIS [M]. Beijing: Science Press, 2006(in Chinese).
- [19] Saaty T L. The Analytical Hierarchy Process [M]. New York: McGraw - hill Company, 1980.

# A Study of Automatical Information Extraction Method of Water – erosion Desertification

GE Jia<sup>1</sup>, ZHANG Zi – ming<sup>2</sup>, WU Cheng<sup>3</sup>, ZHAN Qian<sup>3</sup>, SUN Yong – jun<sup>4</sup>

(1. China University of Geosciences, Wuhan 430074, China; 2. Northwest Bureau of China Metallurgical Geology Bureau,

Xi' an 710119, China; 3. China University of Geosciences, Beijing 100083, China; 4. China Areo Geophysical

Survey and Remote Sensing for Land and Resources, Beijing 100083, China)

**Abstract**: In this paper , part of the loess plateau was chosen as the study area. A set of automatic information extraction methods for water – erosion desertification was proposed by using the ETM<sup>+</sup> images obtained in this area and on the basis of remote sensing data and geographic information system. NDVI (normalized difference vegetation index) , KT3 (KT transform ,humidity) , slope , DEM (elevation) and typical feature spectral data were used to establish the characteristic bands of the study area , and then a decision tree classification rule could be constructed , which could exclude the non – water erosion desertificatin information effectively in the study area. The object – oriented muti – scale segmentation technology was adopted , and the slope , gully density and vegetation coverage were taken as the characteristic bands of the water – erosion desertification classification. With the building of the multi – characters space , the weight value was determined by the analytic hierarchy process , which also served as the classification results and the visual interpretation results shows a good linear relationship , with the overall consistency reaching 82.8%.

**Key words**: water – erosion desertification; information extraction; object – oriented segmentation; analytic hierar– chy process

第一作者简介: 葛 佳(1991 –) ,女 本科生 就读于中国地质大学(武汉) 地质学专业。E – mail: hughfurydemon@126.com。 (责任编辑: 刁淑娟)