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a b s t r a c t

Heat waves and other extreme weather events have attracted a great deal of attention due
to their socioeconomic impacts and relation to climate change. A heat wave is defined
through a general loss function that captures its amplitude, temporal persistence, and
spatial extent. The proposed statistical framework is at the nexus of extreme value theory
(EVT) and functional data analysis (FDA) and enables computation of probabilities of
yet unobserved rare events that are not seen in historical records. Data from the North
American Regional Climate Change Assessment Program, which has produced computer
model predictions of current and future temperatures across much of North America, are
used. The approach allows for the computation of probabilities for heat waves of any pre-
specified temporal duration, spatial extent, and overall magnitude. It can be applied to the
computation of probabilities of other extreme weather events, including cold spells and
droughts.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of the research reported in this paper is to propose a flexible and readily applicable framework that allows
us to compute probabilities of waves of extreme weather. While we focus on heat waves, our approach can be applied to
the computation of probabilities of other extreme weather events, including cold spells and droughts. Our work is to a large
extent motivated by data from the North American Regional Climate Change Assessment Program (NARCCAP; Mearns et al.,
2007, updated 2014), which has produced computer model predictions of current and future temperatures across much of
North America. Our approach thus contains two types of prediction: (1) those implied by the NARCCAP computer model,
and (2) those obtained by the application of extreme value theory spatio-temporal functional data. It allows us to compute
probabilities of heat waves of any prespecified temporal duration, spatial extent and intensity.

There is no universally agreed definition of a heat wave. Heat wave definitions depend on the objective of a study;
relevant research is reviewed in the Supplemental Material. However, all definitions combine temporal duration and some
threshold levels. If a study extends beyond a specific location or a relatively small region, the spatial aspect of the data is also
incorporated. For smaller regions, definitions based on fixed thresholds or historical quantiles are useful, especially from the
public health point of view. However, such definitions may not be relevant to environmental studies, as plant and animal
species adapted to specific regions respond to temperature changes far above (or below) what is typical for the environment
they inhabit rather than to those crossing fixed thresholds. In this respect, measures based on locally-defined percentiles are
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more appropriate. However, a limitation of such an approach is that upper percentiles reflect historical records, so it is not
clear how to use them to compute probabilities of heat waves whose amplitude, duration, and spatial extent are not seen in
historical records. Since we aim at developing a tool set for computing probabilities of possibly yet unobserved rare events,
we propose a different definition. It quantifies departures from values typical for a specific region over a specific period of
time, with the magnitude of the departure being potentially extremely high. As with the other studies, the definition we
propose is motivated by the objective we want to achieve and the data we use. No claim of its universal superiority is made.

As noted above, our objective is to compute the probability of an extreme heatwave of a prespecified duration, amplitude,
and spatial extent. Many previous studies (see the Supplemental Material) use specific probabilistic models, typically
involving some hierarchy with point process and continuous distributions components. Since we focus on extreme events,
we do not need to specify a detailed probabilistic mechanism that heat waves occurrences should follow. We instead use
their limit extremal behavior, which is justified by the heat wave definition we propose. This relatively simple approach is
suitable for our purpose. As always, some precision can be lost due to the application of limit results, but biases resulting
from a misspecified probabilistic model can be reduced. Additional advantages of the proposed methodology are that it is
fast, simple, and can produce easily interpretable and practically useful results. It is hoped that it will complement useful
research that has recently been done.

The paper is organized as follows. We introduce the NARCCAP Data in Section 2. Section 3 focuses on the definition of a
heatwave and shows how it allows us to identify regions at risk of extreme heatwaves.We derive a general loss function that
can be used to quantify heat waves, along with methodology based on extreme value theory that allows us to compute the
probability of a heat wave. The NARCCAP data are analyzed in Section 4. Section 5 presents the results of several simulation
studies designed to assess the performance of our approach. The contribution of the paper is summarized in Section 6.

2. NARCCAP data

The overarching goal of the NARCCAP is to explore the uncertainty associated with using atmosphere–ocean general
circulation models (GCMs) to drive regional climate models (RCMs) that downscale climate to a finer resolution. We utilize
data from the second phase of the program, in which four GCMs provide boundary conditions for six RCMs during a future
period (2041–2070). See Mearns et al. (2009) for more details about the experimental design and climate conditions.

We specifically examine output from the Canadian Regional Climate Model (CRCM; Caya and Laprise, 1999) combined
with the Community Climate System Model (CCSM) global climate model (Collins et al., 2006). The variable of interest is
maximum daily surface air temperature. The temperature values are available at 16,100 sites on a 140 × 115 grid covering
much of North America, the grid area is shown in Fig. 1, in Section 3. The model output includes daily values over nearly
30 years during the period 2041–2070. Because of incomplete records in the final year, only the first 29 years of data were
utilized in analysis.

3. Heat waves: definition and risk quantification

This section develops the statistical framework we use in Section 4 to analyze the NARCCAP data. The framework is
general and can be applied to other similar data sets and to different extreme weather events characterized by amplitude
(intensity), temporal duration, and spatial extent. We discuss these three characteristics in Section 3.1 in the context of a
heat wave. In Section 3.2, we quantify them by means of suitable loss functionals. Section 3.3 develops an approach that
allows us to compute probabilities of extreme heat waves. It is based on the application of EVT to functionals computed
from annual temperatures curves.

3.1. Components of a heat wave

This section motivates the definitions we introduce in Section 3.2. For illustration, we use the NARCCAP data described
in Section 2.

A heat wave definition should be able to capture features related to, ‘‘. . . producing regional impacts on environment
and society, including health, infrastructure, and economy’’ (Gershunov et al., 2009). There is a broad agreement that a heat
wave’s overall size ormagnitude can be captured through the following three components:

• amplitude (or intensity): the size of the exceedance of the temperature over some reference threshold.
• duration: the amount of time over which the heat wave persists.
• spatial extent: the geographic area covered by the heat wave.

The threshold used for quantifying the amplitude can be absolute or relative. An example of an absolute threshold is 105 ◦F
(40.5 ◦C). Such a threshold is motivated by public health considerations, but it is not suitable to study the environmental
impact of heat waves in various parts of the Earth. For example, it is not relevant to the evaluation of the probability of
heat waves in Antarctica, where the highest temperature ever recorded is only slightly above 60 ◦F (15.6 ◦C) (Burt, 2015).
Since our objective is to compute probabilities of heat waves over a large region (North America) with climates ranging
from subtropical to arctic, an absolute threshold cannot be used. One might instead use a fixed relative threshold, such
as 5 ◦C above the historical mean. However, the variability of temperature can vary greatly across a large spatial domain.
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Fig. 1. Heat map of the standard deviation of daily temperature measurements (C) calculated over time at each point across the NARCCAP domain. The ×

marks the site in Wyoming where temperatures (and related functions) are shown over time in many subsequent figures.

Fig. 2. Time series plots for a location in Wyoming. Panel (a) shows temperature (C) time series for each year between 2041 and 2069. Panel (b) shows the
time series of standard deviation of daily temperature (C) across year with a smoothing spline overlaid.

Fig. 1 displays the standard deviation of daily temperatures for the NARCCAP data as a function of location. These standard
deviations, which roughly reflect the difference between the minimum nighttime and maximum daytime temperatures,
vary from about 7 ◦C in coastal areas to about 17 ◦C over the Great Plains. Additionally, the variability of the temperature
at a fixed location generally depends on the time of the year. Fig. 2(a) overlays numerous annual daily temperature time
series for a location inWyoming (see the ‘‘×’’ in Fig. 1), while (b) depicts the standard deviation of daily temperature (across
years) as a function of day. Generally, in North America, the variability of temperature is higher during winter months than
summer months. So in addition to accounting for the heteroscedasticity of variances across the spatial domain, one should
also account for the seasonal heteroscedasticity. Thus, when quantifying amplitude, it makes sense to either standardize the
temperatures (so that thresholds are related to standard deviations above themean) or use quantiles as thresholds that vary
over time and space. Since empirical quantiles do not allow us to go beyond the range of the observed data, we adopt an
approach based on standardized temperatures in most of what follows.

The duration of a heat wave can be quantified in various ways, but two are commonly used. The first is by taking an
ℓ-day moving average of temperatures or their exceedances over a threshold; the values for the current and ℓ − 1 previous
days are averaged in some way, e.g. Hajat et al. (2002). One could instead compute an ℓ-day running median. The second
approach for capturing the duration of a heat wave is to compute the ℓ-day running minimum of the exceedance amplitude
or temperatures, Beniston (2004). Each of these methods describes the persistence of recent temperature values over time
and thus captures the duration component of a heat wave. In most public health applications the duration ℓ is set to be fairly
small (2 or 3 days). However, the impacts of heat waves on agriculture and economy are better quantified using larger values
of ℓ (e.g., 7 or 14 days) combined perhaps with lower exceedance thresholds. For example, if the temperature exceeds 5 ◦F
(2.8 ◦C) over the mean seasonal value in the summer for a period of 2 weeks, this can result in severe stress on the irrigation
infrastructure, depletion of resources, and crop-loss.

Lastly, we discuss the spatial extent of a heat wave. Gershunov et al. (2009) define spatial extent as the percentage of
representative stations where local thresholds are exceeded. Such an approach is suitable to study the extent of a specific
historical heat wave. Our objective is to compute the probabilities of possible future heat waves and identify regions at risk.
Wemust therefore first specify the spatial size of heat waves of interest; spatially large heat waves will appear with smaller
probabilities than small localized heatwaves.Wepropose twomeasures for quantifying the spatial extent of a heatwave. The
first is to consider data within a distance d of a reference location. The second, to consider data for the k nearest neighbors.
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For gridded data, like the NARCCAP data, these approaches are nearly equivalent. In principle, the method could be applied
to neighborhoods consisting of a single point, for example if a specific city is of interest due to public health concerns.

In the next section, we formally describe the methods for quantifying the three components of a heat wave, and then
combine them into a unified loss function quantifying the magnitude of a heat wave.

3.2. Quantifying the magnitude of a heat wave

Data representation
The raw data we consider are spatially-indexed time series of daily temperature measurements:

X(si, j), j = 1, . . . , T , (1)

denoting the temperature at a spatial location si ∈ R2, i = 1, . . . ,m, on day j = 1, . . . , T . Due to the natural annual
climate cycle, for each site, we partition {X(si, j)} into years and view the resulting 365-dimensional vectors as samples from
a functional time series:

Xn(si, ·) = (Xn(si, t), t ∈ [0, 1]). (2)

Here, t ↦→ Xn(si, t) is the temperature curve at site si for year n, viewed as a function of time t (measured as a fraction of the
year). Since we consider daily temperatures (either daily average, minima, or maxima), the functional time series is sampled
at times tk = k/365, with k = 1, 2, . . . , 365. The raw daily time series (1) and the functional time series (2) are related via
the formula

j = 365(nj − 1) + kj, 1 ≤ kj ≤ 365, nj = 1, . . . ,N, (3)

where nj is the year of daily measurement j, kj is the day within year nj corresponding to the jth daily measurement, and [·]

denotes the integer part of a real number. Therefore,

Xnj (si, tkj ) ≡ X(si, j), where tkj := kj/365.

For example, X3(s4, 33/365) = X(s4, 1128) is the temperature at location 4 on February 2 of the third year in the sample.
Leap years are ignored in the simulated NARCCAP data, and all years have 365 days. For further reference, Fig. 3(a) shows the
raw daily temperature (C) time series at a site inWyoming for a period of four years, while Fig. 2(a) shows the corresponding
realizations of the annual (sampled) functional time series curves, Xn(si, ·).

In the following subsections, we introduce loss functionals which allows us to quantify the amplitude (intensity), duration,
and spatial extent of heat waves. Our approach to the quantification of the amplitude is based on standardization.

Data standardization
One way to incorporate spatial as well as seasonal variability is to use standardized temperature values:

Zn(si, tk) =
Xn(si, tk) − X(si, tk)

SD(si, tk)
, (4)

where

X(si, tk) =
1
N

N∑
n=1

Xn(si, tk) and SD2(si, tj) =
1

N − 1

N∑
n=1

(Xn(si, tk) − X(si, tk))2 (5)

define the sample mean and sample variance, respectively, of the temperatures at site si for day tk across the sample of N
years. The Zn(si, tk) are unitless and can be interpreted as standard deviations of the temperature from the mean at location
si and time tk ∈ [0, 1] of year n. Alternative measures of center and spread such as medians and inter-quartile ranges could
be used in place of the sample mean and standard deviation, respectively. The ultimate goal of standardization is to make
the methodology adaptive to the local level of temperatures over the seasons and across space. The time series

Z(si, j) ≡ Znj (si, tj), j = 1, 2, . . . , T = 365 × N, (6)

is obtained by concatenating the yearly temperature curves of the standardized functional time series data. Fig. 3(a) shows
the raw temperature time series for the first four years of NARCCAP data at the site in Wyoming depicted in Fig. 1, while (b)
shows the standardized temperatures. Observe that the non-stationarity in the mean and variance of the process over time
has been attenuated through standardization. Fig. 4 shows autocorrelation function (ACF) plots for the full N = 29 years
of raw and standardized daily temperature data for the site in Wyoming. The exponential decal of the ACF plot in panel (b)
suggests that the series is at least weakly stationary. Standardization thus has two practical benefits: 1) we canworkwith an
absolute threshold, 2) the time series {Z(si, j), j = 1, 2, . . . , T } in (6) can be assumed to be stationary. These two properties
will allow us to apply EVT methods, which require a fixed threshold and stationary observations.
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Fig. 3. Time series plots for a site in Wyoming over 4 years. (a) depicts raw daily temperature (C) and (b) depicts standardized temperature.

Fig. 4. ACF plots for a site in Wyoming over 29 years. (a) ACF for raw daily temperature and (b) the ACF for the standardized daily temperature.

Amplitude threshold
Let Y (si, t), t ∈ [0, 1] be a collection of spatially-indexed functional time series curves sampled at tk = k/365, k =

1, 2, . . . , 365. For example, the Y (si, ·) can be raw annual curves Xn(si, ·) or the standardized curves Zn(si, ·). The amplitude
of a heatwave is characterized by the relationship between Y and some temperature threshold u. The threshold u is chosen to
refer to some amplitude of interest. Ifwewere interested in quantifying heatwaves hotter than 30 ◦C for the raw temperature
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data, then u = 30 ◦C. Alternatively, if Y were actually the standardized temperature process Z , then one might be interested
in assessing heat waves more than 2 standard deviations above the mean, in which case u = 2.

Duration functionals
To capture the persistence of a heatwave, we introduce a functionalDℓ that involves a duration parameter ℓ. One possible

such functional is the temporal moving average of Y , that is,

Dℓ(Y )(si, tk) = Davg
ℓ (Y )(si, tk) :=

1
ℓ

k∑
l=k−ℓ+1

Y (si, tl). (7)

An alternative function involves the minimum of Y over the time interval of interest, defined as follows

Dℓ(Y )(si, tk) = Dmin
ℓ (Y )(si, tk) := min

l=k−ℓ+1,...,k
Y (si, tl). (8)

When applied to the raw temperature data, Dmin
ℓ (Xn)(si, tk) > u indicates that in year n, over a period of ℓ consecutive

days ending at day k, the daily temperatures were always above a critical threshold u. On the other hand,Davg
ℓ (Xn)(si, tk) > u

indicates that the average of the daily temperatures for the period of ℓ days ending at day t in year n exceeds level u.

Spatial functionals
To quantify the spatial extent of a heat wave, we consider for example, either the spatial average or the spatial minimum

of the curves Y (si, tk) over a neighborhood of sites Nd(si) around si. Specifically, we define

Sd(Y )(si, tk) = Smin
d (Y )(si, tk) := min

s∈Nd(si)
Y (s, tk) (9)

and

Sd(Y )(si, tk) = Savg
d (Y )(si, tk) :=

1
|Nd(si)|

∑
s∈Nd(si)

Y (s, tk),

where |Nd(si)| is the number of elements in neighborhood Nd(si).
One can consider various types of neighborhoods, depending on the type of available data. For example,Nd(si) can denote

the neighborhood of sites {s1, s2, . . . , sm} within distance d of location si. With a slight abuse of notation, Nd(si) can also be
used to denote the neighborhood of d nearest neighbors of location si (including the location itself).

When applied to the raw temperature data, Smin
d (Xn)(si, tk) > u indicates that on day k of year n, the temperature over

the entire neighborhood Nd(si) exceeds a critical threshold u. If Savg
d is used instead, we obtain a softer criterion where the

average temperatures in the neighborhood exceed the critical level.

Heat wave functionals
The duration and spatial extent functionals can be combined in order to obtain a variety of heat wave functionals. One can

consider for example

H(m,m)(Y )(si, tk) := Smin
d ◦ Dmin

ℓ (Y )(si, tk) = min
s∈Nd(si)

(
min

l=k−ℓ+1,...,k
Y (s, tk)

)
.

Others includeH(m,a)
:= Smin

d ◦Davg
ℓ ,H(a,m)

:= Savg
d ◦Dmin

ℓ , or in factH∗
:= Davg

ℓ ◦Smin
d . Notice that the Savg

d ◦Davg
ℓ = Davg

ℓ ◦Savg
d ,

but Smin
d ◦ Davg

ℓ ̸= Davg
ℓ ◦ Smin

d , and in fact all of the above examples lead to different heat wave functionals that can be used
to identify (slightly and sometimes fundamentally) different heat wave events. For example, if H(m,m)(Xn)(si, tk) > u, then
we know that there is a period of ℓ consecutive days when the temperatures over an entire d-neighborhood of site si were
always above level u. Such an event, even if u is moderately large, can lead to rather severe socio-economic consequences. On
the other hand such eventsmay be rather rare. Therefore, softer heat wave functionals such asH(m,a) andH(a,a)

:= Savg
d ◦Davg

ℓ

are also of great practical interest. The functionalsH(a,m)
= Savg

d ◦Dmin
ℓ orH(m,m)

= Smin
d ◦Dmin

ℓ involving moving minimum
duration functionals are of particular interest in the context of wildfires. Indeed, a prolonged period of high temperatures
leads to dry-out conditions that prepare perfect fuel for forest fires.

Heat wave magnitude and definition
The heat wave functionals defined above depend on the key parameters ℓ and d. The intensity of a heat wave depends

on the threshold parameter u. These parameters can be varied with the context of the problem in order to quantify all three
features of heat waves: amplitude (u), duration (ℓ), and spatial extent (d). Taken together, these parameters quantify the
magnitude of a heat wave.

Additionally, for a fixed heat wave functionalH, duration ℓ, extent d, and amplitude u, a heat wave event occurs at location
si and time tk when H(Y )(si, tk) ≥ u.
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Fig. 5. Time series produced by applying duration functionalsDℓ to the standardized temperatures for the Wyoming site using ℓ = 10. Time series having
the same color correspond to the same year. Panel (a) shows the 10-day running means Davg

10 (Zn)(si, tk) as a function of k = 1, . . . , 365 for two different
years. Panel (b) shows the 10-day running minimum, based on the Dmin

10 functional applied to the same data.

Fig. 6. A map of the neighborhood structures for different locations using 50, 150, and 450 nearest neighbors. Each × marks a neighborhood centroid and
the sequences of gray shading mark the extents of the increasing neighborhood sizes.

Illustration with NARCCAP data
Using the NARCCAP data, we now illustrate how different choices ofH affect the results. For ease of interpretation, in the

sequel, we work only with the standardized observations Zn(si, tk) defined by (4).
Consider the application of the Dℓ defined by (7) or (8) to the standardized time series Z(si, ·) for the site in Wyoming

using a duration of ℓ = 10 days. Thus, we are computingD10(Zn)(si, tk) for a specific location si across all times. A plot of the
moving average duration loss function given in (7) for two different years is shown in Fig. 5(a). The time series measures the
average amplitude over the last 10 days. The runningminimum loss function given in (8) is shown in Fig. 5(b). The time series
in Fig. 5(b) shows the minimum amplitude during the last ℓ days. It is seen that at this single location, D10(Zn)(si, tk) > 1 is
a rare event if (7) is used, while D10(Zn)(si, tk) > 0 is a rare event if (8) is used.

We next look at plots related to the spatial extent loss function Smin
d using d = 50, 150, and 450 nearest neighbors. As

shown in Fig. 6, the shape of the neighborhoods changes depending on where si is located, especially near the border of the
study area. We apply the spatial extent function (9) after the duration functionals have been applied to the standardized
NARCCAP data. We consider both duration functionals (7) and (8) with ℓ = 10. The resulting values of H(Znj )(s, tkj ) (as a
function of s) for j = 400 are shown in Fig. 7. Recall (3) and note that j = 400 corresponds to day kj = 35 (February 2)
of year nj = 2. The spatial structures of the two versions of the heat wave statistics clearly differ. In agreement with what
we have seen in Fig. 5 for a single location, the heat wave statistics based on the running minima duration function are
smaller than those based on the running mean duration function. This shows that extreme heat waves in the space–time
domain must be defined using a different amplitude threshold u depending on the specific loss function. Furthermore, the
different functionals reveal different structure of the regions under heat wave risk. As seen in Fig. 7(a), there is a region in the
southwest of the United States in close proximity to Tucson, Arizona under severe heat wave risk, where the temperatures
are close to u = 1 standard deviations above themean for a period of 10 consecutive days. A less intense but clearly outlined
region under heatwave stress extends across a ratherwide area in the Alberta, Saskatchewan and British Columbia provinces
of Canada along both sides of the Canadian Rocky Mountains. This observation is in line with the historical incidence of
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Fig. 7. Heat map of the heat wave statistic H(Znj )(s, tkj ) for j = 400 with spatial extent d = 50 nearest neighbors and duration ℓ = 10 days as a function
of the spatial location s. Panel (a) shows H(m,a)

= Smin
50 ◦ Davg

10 , while (b) shows H(m,m)
= Smin

50 ◦ Dmin
10 .

wildfires in this region, which is likely to intensify in the presence of heat waves of long durations. We note that the maps
in Fig. 7 exhibit merely the values of risk functional on a specific single day. To obtain more systematic quantification of the
risk, wemust be able to compute annualized probabilities of heatwaves of any type. In the following section, wewill develop
methodology for computing probabilities of such extreme heat wave events that can be applied to general functionals H.

3.3. The probability of a heat wave

To make the exposition more concrete, we first consider the probability of a heat wave occurring in any given calendar
year. Heat wave probabilities across the entire year will be studied in Section 4.1. One can also compute probabilities of a
heat wave occurring over any specified part of the year; in Section 4.2, we consider the April–May period.

Fix a location si. We are interested in the probability of a heat wave of amplitude u and duration ℓ in a neighborhood
Nd(si) occurring during period [a, b] ⊆ [0, 1] of a calendar year for a general temperature process Y . Note that [a, b] is a
portion of the annual calendar year. This could be the entire year, the month of April, the summer season, etc. We assume
that the probability does not depend on the calendar year. Fixing the heat wave functional H, let

Mn := max
a≤tk≤b

H(Yn)(si, tk),

where the dependence of Mn on H, [a, b], and si is suppressed for simplicity (though clear from the context). The random
variablesM1,M2, . . . ,MN are blockmaximaof aweakly dependent stationary time series and are assumed to be independent
and identically distributed according to a generalized extreme value (GEV) distribution, see e.g. Theorem 2.2 in Chavez-
Demoulin and Davison (2012). Denote by M0 a random variable with the same distribution as each Mn, n = 1, 2, . . . ,N .
Then

P(M0 ≤ u) = Gγ ,µ,σ (u) := exp

{
−

(
1 + γ

(u − µ)
σ

)−1/γ

+

}
, (10)

with (x)+ = max{0, x}, and γ ∈ R, µ ∈ R, and σ > 0, respectively, the shape, location, and scale parameters of the GEV
distribution. These parameters depend on si, H, and [a, b].

A heat wave with amplitude u occurs in year n if H(Yn)(si, tk) > u for some a ≤ tk ≤ b, or equivalently, if Mn > u. The
probability

p(si;H, u, ℓ, d, [a, b]) = P(Mn > u) = P(M0 > u)

can be approximated by the tail probability of the fitted GEV distribution.
Blocks of equal size, determined by the length of [a, b], must be used.Whatmatters is that the number of elements in each

block is large enough to ensure that the approximation by a GEV distribution holds reasonably well and that the number of
blocks is large enough that a maximum likelihood fit to this distribution is reasonable. One can, for example, consider blocks
which exclude winter months, if only probabilities of heat waves occurring during the warm season are of interest. If the
time period (within a year) of interest is short, and the region under consideration climatically uniform, it is acceptable to
work with the raw data X(si, j). In the following, we describe the general procedure, in which Y denotes raw, standardized,
or otherwise transformed data. The condition for its applicability is that H(Y )(si, j), j = 1, 2, . . . , T be a stationary weakly
dependent time series, as seen in Fig. 8.
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Fig. 8. A time series plot of H = Savg
50 ◦ Dmin

10 is shown in (a), while (b) shows the corresponding ACF plot, for the site in Wyoming. Panels (c) and (d) show
the same information for H = Smin

50 ◦ Dmin
10 .

In the general case, we want to compute the probability

p(si;H, u, ℓ, d, [a, b]) := P
(
H(Yn)(si, tk) ≥ u for some tk ∈ [a, b]

)
(11)

for some [a, b] ⊆ [0, 1]. We proceed as follows:

1. Compute the heat wave statistics

Mn := max
tk∈[a,b]

H(Yn)(si, tk), n = 1, 2, . . .,N.

2. Fit a GEV model Gγ ,µ,σ to the dataMn, n = 1, . . . ,N , using an appropriate method of estimation to obtain parameter
estimates γ̂ , µ̂, and σ̂ .

3. Given a threshold u, approximate the desired heat wave probability in (11) by

p̂(si;H, u, ℓ, d, [a, b]) := 1 − Gγ̂ ,µ̂,σ̂ (u).

4. Analysis of NARCCAP Data

The statistical framework we developed is now applied to climate model output from the NARCCAP data introduced
in Section 2. Section 4.1 presents selected results of the application to the whole data set, while Section 4.2 focuses on the
Canadian plains, which recently experienced a heat wave leading to catastrophic wildfires on a scale not previously seen.We
emphasize that themaps displayed in this section do not show any cumulative probabilities for large geographical areas. The
probabilities, coded by color, refer to a neighborhood centered at a given pixel. The maps are thus graphical, not inferential,
tools aimed at identifying regions at risk of heat waves.

4.1. Application to the whole data set

We explore the probabilities and locations of future heat waves of various magnitudes using the NARCCAP data for
different durations ℓ, and spatial extent d, while holding the amplitude threshold u fixed at 2. The amplitude u = 2,
corresponding to two standard deviations above the mean, is chosen as a standard reference level. It allows us to focus
on extreme heat waves generally not seen in historical records. It can be modified without difficulty if more or less intense
heat waves are of interest. There is an interplay between the values of u, d and ℓ that can be exploited in a specific public
health or agricultural context. In this section, the heat wave functional is fixed to be H(m,a)

:= Smin
d ◦ Davg

ℓ ; Section 4.2
studies the effect of choosing different loss functionals. We construct heat maps of heat wave probability based on duration
values ℓ = 3, 10, and 30 days, and d nearest-neighbor neighborhoods with d = 50, 150, and 450. Informally, ℓ = 3 would
represent a heat wave of relatively short duration thatmay cause public health problems, while ℓ = 30would be a relatively
long duration heat wave that may affect agricultural production. The spatial extent d = 50 would be a fairly small regional
heat wave, while d = 450 would correspond to a heat wave affecting an area comparable to a typical US state.

Fig. 9 shows a map of the probability of a heat wave for d = 50 for all the duration parameters, with (a) corresponding
to ℓ = 3, (b) to ℓ = 10, and (c) to ℓ = 30. When ℓ = 3, there is a surprisingly high probability of localized heat waves over
locations in the Labrador Peninsula. Such short heat spells may occur with probability approaching 50%, or every other year,
on average. While our EVT approximation may break down for such high probabilities, it is nevertheless obvious that such
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Fig. 9. Probability of a heat wave with amplitude more than 2 standard deviations above the mean for spatial extent d = 50 and durations of (a) ℓ = 3, (b)
ℓ = 10, and (c) ℓ = 30.

heat spells will be common in that part of Canada. Generally, our simplemethod shows that the area around the Hudson Bay
will experience a high frequency of hot spells lasting a few days. There is a noticeable drop in the probability of such a heat
wave around the Rocky Mountain range. The probability is also very low along the Eastern seaboard of the United States.
Increasing the duration to ℓ = 10 days, dramatically reduces the probability of a heat wave of the correspondingmagnitude.
The reader will note the different probability scale. Many parts of Canada once again show an increased probability of a heat
wave of this magnitude, as well as parts of Iowa and Illinois, certain regions in Texas, and, most visibly, the Pacific Ocean off
the Southern California coast. Increasing the duration to approximately 1 month (ℓ = 30), causes the probability of a heat
wave to drop even further; generally, throughout North America, heat waves of thismagnitudewill occur with probability of
less than 1%, i.e. once per one hundred years, on average. Over the Canadian plains and the Canadian Rockies, this probability
increases only slightly to about 1.5%. There are two patches, in Arizona and Southern Texas, with probabilities elevated to
2%–3%.

We now consider heat waves of larger spatial extent (d = 150) using the same durations (ℓ = 3, 10, 30) and amplitude
threshold (u = 2) as before. The associated probability maps are shown in Fig. 10. Comparing Figs. 9 (for d = 50) and 10 (for
d = 150), we see somewhat similar spatial patterns, though the probabilities are substantially lower for d = 150 compared
to d = 50. This perfectly matches our intuition, as heat waves with greater spatial extent, keeping duration and amplitude
constant, should be less likely than those of smaller spatial extent. Heat waves of duration greater than ℓ = 10 days can
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Fig. 10. Probability of a heat wave with amplitude more than 2 standard deviations above the mean for spatial extent d = 150 and durations of (a) ℓ = 3,
(b) ℓ = 10, and (c) ℓ = 30.

occur over the continental United States with a probability of less than 1%. Short heat spells of duration ℓ = 3 days can occur
over the Labrador peninsula with probability approaching 25%.

Lastly, we consider the probability of a heat wavewith a spatial extent of d = 450 using the same duration and amplitude
parameters as before. This is a relatively large spatial extent corresponding to an area of size similar to that of Colorado
or Utah. The probability maps shown in Fig. 11 have a spatial structure broadly similar to that in Figs. 9 and 10 (though
on different probability scales). However, there are some geographic changes in which regions are relatively more likely
to experience a heat wave. Specifically, comparing panel (c) of Figs. 9–11, we see that parts of North Dakota and eastern
Montana are relatively more likely to see a heat wave for d = 450 than for d = 50 or 150 compared to surrounding regions,
though the absolute probability is still much lower.

4.2. Application to Canadian plains

We now proceed to analyze the probability of different magnitude heat waves (with respect to the functionalH, duration
ℓ, and amplitude u) for the region surrounding Fort McMurray in Alberta, Canada. This part of Canada experienced a
devastating wildfire that began on May 1, 2016. The fire necessitated the largest evacuation in Alberta history and could
prove to the costliest natural disaster in Canadian history (Ramsay and Shum, 2016; Evans, 2016). The region experienced
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Fig. 11. Probability of a heat wave with amplitude more than 2 standard deviations above the mean for spatial extent d = 450 and durations of (a) ℓ = 3,
(b) ℓ = 10, and (c) ℓ = 30.

unusually hot temperatures and low humidity prior to and during the fire, which is believed to have aided its spread. In what
follows, we examine the temperature conditions immediately prior to the fire and estimate the probability of seeing similar
conditions in a given year using the same NARCCAP data analyzed in Section 4.2. A more complete analysis might also use
humidity, precipitation and wind data.

We first consider the temperature conditions in FortMcMurray immediately prior to the fire.Maximumdaily temperature
(◦C) was obtained for the weeks prior to the fire (Accuweather.com, 2016). Three different duration loss functions (average,
median, and minimum) were crossed with three different duration lengths (1 week, 2 weeks, 3 weeks) to quantify the
temperature conditions in various ways. More specifically, duration functionals Davg

ℓ (7), Dmin
ℓ (8), and Dmed

ℓ defined by

Dmed
ℓ (X)(si, tk) := median

l=k−ℓ+1,...,k
X(si, tl), (12)

were applied to raw temperatures with durations ℓ = 7, 14, and 21 days. The values produced by the duration functionals
on the day before the fire began (April 30, 2016) are shown in Table 1. Note that a spatial functional (S) was not used in
calculating these values, as only temperatures at FortMcMurraywere considered. Since these values quantify, in some sense,
the temperature conditions immediately prior to the fire, they were used as amplitude thresholds of interest in the analysis
that follows. While we argued that standardized temperatures are more appropriate for quantifying heat waves, our time
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Table 1
Temperatures (◦C) for April 30, 2016 produced by different duration func-
tions for different duration lengths when applied the maximum daily tem-
perature for Fort McMurray, Alberta in April 2016.

Duration Duration function

Average Median Minimum

One week 15.0 15.0 8.0
Two weeks 16.1 15.0 8.0
Three weeks 13.6 13.0 0.0

frame (two months) and location are relatively small, so we work with the raw NARCCAP temperatures (after transforming
them to degrees Celsius for compatibility).

We now examine the probability of seeing a heat wave with the conditions given in Table 1. Specifically, we consider
three combinations of spatial extent and duration functions: average–average, median–median, and minimum–minimum.
For clarity, define

Smed
d (Y )(si, tk) := median

s∈Nd(si)
Y (s, tk). (13)

We considered heat wave functionals H = Savg
d ◦ Davg

ℓ , H = Smed
d ◦ Dmed

ℓ , and H = Smin
d ◦ Dmin

ℓ . We fixed the spatial extent
at d = 50 nearest neighbors, while for each heat wave functional, we considered heat waves lasting ℓ = 7, 14, and 21 days.
We used temperatures in April and May only, as this period includes the start of the Fort McMurray fire as its center.

We examine the probability of seeing a heat wave with characteristics similar to those before the Fort McMurray fire
during the time period 2041–2069, as predicted by the NARCCAP data described in Section 2. Using the parameters described
in the previous paragraph, heat maps of the associated probabilities are shown in Fig. 12. For ℓ = 7 days, the probability
of seeing similar temperature conditions near Fort McMurray is about 87% for the mean–mean heat wave functional,
close to 89% for the median–median heat wave functional, and near 75% for the min–min functional. Increasing the heat
wave duration to ℓ = 14 days, the probability of seeing similar temperature conditions is close to 46% for the mean–
mean functional, 67% for the median–median heat wave functional, and about 30% for the min–min functional. Perhaps
surprisingly, for ℓ = 21, this is about 68% for the mean–mean functional, 76% for the median–median heat wave functional,
and 92% for the min–min functional. This rise in heat wave probability compared to ℓ = 14 occurs because the amplitude
thresholds used for the two calculations differ.

In summary, the likelihood of seeing temperature conditions similar to those immediately before the May 2016 Fort
McMurray fire is fairly large when looking at heat waves based on average, median, or minimum temperature. The first
two functionals are more relevant for predicting conditions conducive to wildfires as they indicate high average (median)
temperatures over a long period and a large area. The min–min functional is large if the minimum temperature over an area
and over a period of time never drops below a certain threshold. One very cold day somewhere in the region of interest is
not likely to reduce the risk of a wildfire. The broad conclusion is that conditions conducive to the May 2016 Fort McMurray
area wildfire are likely to occur in the mid 21st century with relatively high frequency based on the temperature data from
the NARCCAP program.

5. Assessment of the methodology

It this section, we validate the methodology and conclusions of the previous sections using several simulation studies
and sensitivity analysis.

The uncertainty of the estimated parameters can impact the computed probability of an extreme event; it is useful to
quantify the size of this impact. We consider the Wyoming site used before. We created heat wave statistics using four
composition functions: Smin

d ◦Davg
ℓ , Savg

d ◦Davg
ℓ , Smin

d ◦Dmin
ℓ , and Smed

d ◦Dmed
ℓ with ℓ = 10 days and smoothing over neighbors

within d = 80 km of the site. Annual block maxima of the statistics for the site were taken, and then maximum likelihood
estimation was used to estimate the parameters for a GEV model fit to that set of maxima. The probability of a heat wave
with amplitude more than u = 1.75 and u = 2 (standard deviations), for the four functionals was computed using the
estimated parameters, as well as various combinations of the lower and upper bounds of 95% confidence intervals for each
parameter (based on a normal approximation). The associated upper-tail heat wave probabilities, p̂, are shown in Table 2
for Smin

d ◦ Davg
ℓ with u = 1.75 Complete results are provided in the Supplementary Material. It is seen that the probability

is relatively unaffected by the different combination of parameter values, unless there are large relative changes in both the
scale location and shape parameters. In general, the probabilities fluctuate more for smaller values of u, and much less for
the larger values of u, which correspond to the extreme events of interest.

Another question of interest is how well the proposed methodology approximates the desired exceedance probabilities.
We consider an experiment to assess this. First, we assume that the block maxima Mn, n = 1, 2, . . . , 29, have the standard
Gumbel distribution, i.e., P(Mn ≤ x) = exp{−e−x

}. For an upper tail probability p, we can compute up such that

1 − exp{−e−up} = p,

i.e. up = − ln{− ln(1 − p)}. For fixed p, we then execute the following simulation experiment:
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Fig. 12. Probability of a heat wave in the region surrounding Fort McMurray using conditions similar to those before the May 2016 fire. The heat wave
functional for (a) is H = Savg

d ◦ Davg
ℓ , (b) is H = Smed

d ◦ Dmed
ℓ , and (c) is H = Smin

d ◦ Dmin
ℓ . The duration is, from top to bottom, 7, 14, 21 days. The spatial

extent is d = 50. The amplitude threshold used in (a) is 15.0 ◦C, in (b) is 15.0 ◦C, and in (c) is 8.0 ◦C. Fort McMurray is shown by the ×.

Table 2
Table of the estimated heat wave probabilities for the Wyoming site, using
various combinations of parameter estimates and bounds from 95% confi-
dence intervals, for Smin

d ◦ Davg
ℓ with u = 1.75.

Location Scale Shape p̂

0.92 0.25 −0.36 0.0000
1.01 0.18 −0.36 0.0000
1.01 0.25 −0.58 0.0000
1.01 0.25 −0.36 0.0000
0.92 0.18 −0.58 0.0000
1.11 0.25 −0.36 0.0005
1.01 0.32 −0.36 0.0061
1.01 0.25 −0.13 0.0212
1.11 0.32 −0.13 0.0895

1. Generate independent, identically distributed standard GumbelMn, n = 1, 2, . . . , 29.
2. Fit a GEV model to the sample using maximum likelihood estimation to estimate model parameters γ̂ , µ̂, and σ̂ .
3. Compute p̂ = 1 − Gγ̂ ,µ̂,σ̂ (up).
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Table 3
Simulation experiment results comparing the estimated upper-tail probabil-
ity to the true upper-tail probability.

p 0.5 0.25 0.1 0.01 0.001
¯̂p 0.50 0.24 0.09 0.01 0.00
se( ¯̂p) 0.09 0.07 0.04 0.01 0.00

Fig. 13. A heat map of elevation across the NARCCAP study area (lighter colors indicate higher elevation. The×s mark the location of Saint Louis (Missouri),
District of Columbia, Vancouver (British Columbia), Fort McMurray (Alberta), Houston (Texas), Iqaluit (Nunavut), and the Wyoming site.

4. Repeat steps 1–3 100 times, then compute ¯̂p, the average of p̂ over the 100 samples, and se( ¯̂p), the estimated standard
error of ¯̂p.

The results, shown in Table 3, show that ¯̂p is close to the true value of p, with an associated standard error that decreases as
the probability p becomes more extreme.

We next perform a similar simulation study, but rather than using the Gumbel distribution, we use estimated GEV
distributions at seven locations spread across the study area. Specifically, we consider the sites Saint Louis (Missouri), District
of Columbia, Vancouver (British Columbia), Fort McMurray (Alberta), Houston (Texas), Iqaluit (Nunavut), and the Wyoming
site previously discussed. The locations of these sites are shown on a heat map of elevation in Fig. 13. Heat wave statistics for
the NARCCAP data were computed using four functionals: Smin

d ◦ Davg
ℓ , Savg

d ◦ Davg
ℓ , Smin

d ◦ Dmin
ℓ , and Savg

d ◦ Dmax
ℓ , with ℓ = 10

days and smoothing over neighbors within d = 240 km of the centroid. We then consider the estimated GEV model for the
grid cell whose centroid was closest to each of the seven locations. For those grid cells, we computed p̂ = 1−Gγ̂ ,µ̂,σ̂ (u) using
the respective GEV model parameters estimated for each grid cell and the relevant amplitude u. We then:

1. Generated i.i.d.Mn, n = 1, 2, . . . , 29, from a GEV(γ̂ , µ̂, σ̂ ) distribution.
2. Fit a GEV model to the sample from 1 using maximum likelihood estimation to estimate model parameters by γ̃ , µ̃,

and σ̃ .
3. Compute p̃ = 1 − Gγ̃ ,µ̃,σ̃ (t).
4. Repeat steps 1–3 100 times, then compute ¯̃p, the average of p̃ over the 100 samples, and se( ¯̃p), the estimated standard

error of ¯̃p.

The amplitude u = 1.5 was used for Smin
d ◦ Davg

ℓ and Savg
d ◦ Davg

ℓ , u = 1.25 for Smin
d ◦ Dmin

ℓ , and u = 2.5 for Savg
d ◦ Dmax

ℓ .
The results are shown in Table 4. In all cases, the mean of the sampling distribution ( ¯̃p) was quite close to the probability (p̂)
being estimated.

An important aspect of this analysis is verifying the dependence assumptions of the heat wave statistics over time.
Specifically, we require that the autocorrelation among heat waves statistics becomes small as the lag between them
increases. A time series plot of the autocorrelation function as a function of lag distance for all locations simultaneously
is not helpful, as there are over 16,000 lines to plot. Instead, we consider a heat map of the autocorrelation function across
the NARCCAP domain for several lags. The autocorrelation function will drop differently for each location as a function of
lag, but a heat map should show the autocorrelation steadily dropping as lag distance increases. The autocorrelation heat
map of the H = Smin

d ◦ Davg
ℓ , with ℓ = 10 days and smoothing over d = 50 nearest neighbors, is shown for lags of (a) 10,

(b) 20, (c) 30, (d) 40, (e) 50, and (f) 60 days in Fig. 14. The autocorrelations decay dramatically over the land masses of North
America, with a much slower decay over bodies of water. Practically, this is not a problem in our analysis since inference is
mainly desired over land, where residents are more likely to be affected by extreme events.

Lastly, we considered the effect of a (small) trend in the raw data on the estimated heat wave probabilities. In the context
of the NARCCAP data, if the temperatures have a small annual increase (on average), how does this affect the heat wave
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Table 4
Estimated mean and standard deviation of the sampling distribution of an estimated probability using synthetic data generated from GEV model with
estimated parameter values for several sites in the NARCCAP study area. Location abbreviations refer to Saint Louis, District of Columbia, Vancouver, Fort
McMurray, Houston, Iqaluit and Wyoming. The heat wave statistics for which the GEV distributions were estimated are provided on the left side of the
table, along with the amplitude u for which the upper-tail probability is estimated.

S.L. D.C. Van. F.M. Hou. Iq. Wy.

p̂ 0.105 0.013 0.117 0.100 0.057 0.000 0.000
Smin
d ◦ Davg

ℓ , u = 1.5 ¯̃p 0.093 0.009 0.110 0.098 0.047 0.000 0.001
se( ¯̃p) 0.043 0.011 0.054 0.040 0.034 0.000 0.004

p̂ 0.434 0.255 0.555 0.214 0.309 0.374 0.114
Savg
d ◦ Davg

ℓ , u = 1.5 ¯̃p 0.432 0.269 0.563 0.210 0.298 0.377 0.103
se( ¯̃p) 0.084 0.075 0.090 0.058 0.075 0.082 0.048

p̂ 0.000 0.000 0.000 0.022 0.005 0.002 0.002
Smin
d ◦ Dmin

ℓ , u = 1.25 ¯̃p 0.001 0.001 0.002 0.024 0.007 0.004 0.006
se( ¯̃p) 0.001 0.002 0.004 0.018 0.010 0.008 0.008

p̂ 0.454 0.453 0.510 0.563 0.442 0.815 0.003
Savg
d ◦ Dmax

ℓ , u = 2.5 ¯̃p 0.455 0.476 0.518 0.579 0.442 0.812 0.006
se( ¯̃p) 0.085 0.082 0.092 0.071 0.083 0.056 0.009

Fig. 14. A heat map of the autocorrelation function of H = Smin
d ◦ Davg

ℓ for several lags, with ℓ = 10 days and smoothing over d = 50 nearest neighbors.
The autocorrelation function is shown for lags of (a) 10, (b) 20, (c) 30, (d) 40, (e) 50, and (f) 60 days.

probabilities? We focused on the data used in the prior Fort McMurray analysis. We proceeded with analysis in a similar
fashion, with one small change. Specifically, the raw datawere ‘‘detrended’’ before analysis. A simple linear regressionmodel
was fit to the raw temperature time series at each location. The residuals of the fitted model were obtained, and then the
fitted value for the first day of temperatures was added to the residuals (to put the detrended temperatures on the same
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Fig. 15. Difference in the probability of a heat wave in the region surrounding Fort McMurray using conditions similar to those before the May 2016 fire,
using both the original raw data and detrended data. The heat wave functional for (a) isH = Savg

d ◦Davg
ℓ , (b) isH = Smed

d ◦Dmed
ℓ , and (c) isH = Smin

d ◦Dmin
ℓ .

The duration is 7 days and the spatial extent is d = 50 in each panel. The amplitude threshold used in (a) is 15.0 ◦C, in (b) is 15.0 ◦C, and in (c) is 8.0 ◦C. Fort
McMurray is shown by the ×.

scale as the original data). The goal of this adjustment was to remove any small trend in the data before analysis. We then
considered heat wave functionals H = Savg

d ◦ Davg
ℓ , H = Smed

d ◦ Dmed
ℓ , and H = Smin

d ◦ Dmin
ℓ with a fixed spatial extent of

d = 50 nearest neighbors and heat waves of duration ℓ = 7 days. After computing the block maxima of the April heat wave
statistics and fitting GEVmodels to the block maxima, we proceeded to estimate the probability of a heat wave of amplitude
greater than the values in the first row of Table 1 for each respective heat wave functional, as done in the previous analysis.
We compared the probability results from the original analysis to the results from the detrended data by creating a heat
map of the difference between the estimated probability from the original analysis and the estimated probability from the
detrended data. The results are shown in Fig. 15. There is generally only a small difference in the probabilities. Detrending
the data results in lower temperatures, so the heat wave probabilities for the detrended data are slightly smaller than for
the original data.

6. Summary and outlook

Combining methods of FDA and EVT, we proposed a paradigm for computing probabilities of heat waves with specified
characteristics. These probabilities can be computed once the spatial region, duration and intensity, together with a loss
function have been determined. These will depend on a specific economic or climate research question, but the general
methodology is the same. A specific applicationmight be as follows. In an agricultural region that might grow a certain crop,
a specific type of a heat wave might be very harmful to that crop. We can compute the probability of such a heat wave (per
year) thus enhancing informed decisions about the selection of future crops.

Since we aimed at proposing a general statistical framework, we illustrated our approach with a broad application to all
locations in North America and several spatial extents and durations. We also focused on a smaller region in Canada. We
showed what kind of information can be obtained by drawing maps s ↦→ P(s), where s is a location and P(s) is a probability
of a specific heat wave centered at s. The maps show how these probabilities change in space for different types of heat
waves. They are graphical, not inferential, tools aimed at showing interesting patterns. Probabilities can be attached only to
a specific region defined by its center and the neighborhood of this center.

The approach advocated in the paper in not restricted to the quantification and computation of the probabilities of heat
waves. It can be applied to other extremeweather events that are characterized by temporal duration and spatial extent. For
example to computing the probability of a drought. A drought is characterized by unusually low precipitation over a region
for an extended period of time. The duration parameter ℓ could thus correspond to 2–3 months. More details are given in
the Supplemental Material.

Going beyond weather data, spatially indexed functional data naturally occur as hyperspectral data in remote sensing,
see e.g. Zullo et al. (2018) and references therein. It is conceivable that a combination of EVT and FDA methods might, for
example, lead to methodology for detecting the spread of invasive species. Another potential direction might be prediction
of extreme pollution events. FDA techniques have been applied to pollution data, but with different goals, see e.g. Hörmann
et al. (2018) and references therein. It is hoped that this paper will stimulate research that combines approaches of EVT and
FDA to solve many practical questions.

Interested researchers may find the NARCCAP data analyzed in this paper at the permanent URL https://dx.doi.org/10.
17632/jz553h7ytw.1. R code for producing the graphics and results are available at runmycode.org.
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