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ABSTRACT

The construction of polders in the coastal region of Bangladesh has significantly modified the patterns of
flooding, as well as leading to significant land use/land cover (hereinafter, LULC) changes. The impact of LULC
change and flooding on poverty is complex and poorly understood. This study presents a spatiotemporal ap-
praisal of poverty in relation to LULC change and pluvial flood risk in the south western embanked area of
Bangladesh. A combination of logistic regression (LR), cellular automata (CA), and Markov Chain models were
utilised to predict future LULC based on historical data. Flood risk assessment was performed at present and for
future LULC scenarios. A spatial regression model was developed, incorporating multiple parameters to estimate
the wealth index (WI) for present-day and future scenarios. In the study area, agricultural lands reduced from 34
% in 2005 to 8% in 2010, while aquaculture land cover increased from 17 % to 39 % during the same time. The
rate of LULC change was relatively low between 2010 and 2019. Based on the recent trend, LULC was predicted
for the year 2030. Flood risk was positively correlated with LULC and the expected annual damage (EAD) was
estimated at $903 million in 2005, which is likely to increase to $2096 million by 2030, considering changes in
LULC scenarios. The analysis further showed that the EAD and LULC change were negatively associated with the
WI. Despite consistent national GDP growth in Bangladesh in recent years, the rate of increase of WI is likely to

be low in the future because flood risk and patterns of LULC change have a negative effect on WI.

1. Introduction

It is widely recognised that poor people are disproportionately ex-
posed to environmental hazards (Winsemius et al., 2018). There are
several possible reasons for this. For instance, poor people tend to in-
habit remote low-lying floodplains, due to the limited development
opportunities and relatively cheaper lands (Dasgupta, 2007). Their li-
velihoods and assets are less protected (Bangalore et al., 2019; Hossain
et al., 2012), and thus, they have relatively a low capacity to cope with
property losses resulting from flooding (Brouwer et al., 2007).

Bangladesh is located in the floodplain of three major rivers — the
Ganges, Brahmaputra, and Meghna. The combined discharge generated
of these three rivers is the highest in the world. The peak run-off depth
is also the highest, which, combined with storm surges generated from
the Bay of Bengal. This makes a major portion of the country is prone to
flooding (Dasgupta, 2007). Flood processes in the coastal region of

Bangladesh are complex, as it can occur from multiple sources such as
intense precipitation during the monsoon, high water levels in the
rivers, and cyclone induced storm surges (Adnan et al., 2019). Different
environmental stresses create biophysical and socioeconomic chal-
lenges in the coastal region. For instance, frequent flooding and in-
creasing soil salinity limit agricultural productivity, which is the main
source of livelihoods in coastal Bangladesh (Rahman et al., 2020).
Flood management approaches in the coastal region of Bangladesh
include both structural and non-structural measures (Paul and Rashid,
2017; Rahman and Salehin, 2013). Major surge events induced by cy-
clones in the 1950s forced the then government to invest in the Coastal
Embankment Project (CEP) in the 1960s. The CEP aimed at increasing
agricultural production to ensure food security, by preventing salinity
intrusion in the coastal region particularly during the dry season. As a
part of the CEP, 139 polders (enclosed coastal embankments) were
created in between the 1960s and 1980s (Islam et al., 2016; Warner
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et al., 2018). The construction of the polders has brought both bene-
ficial and harmful effects on society and the environment. The protec-
tion from flooding afforded by embankments led to an increase in
agricultural productivity until the 1980s (Adnan et al., 2020). Em-
bankments have demonstrably protected the polder area against storm
surges and fluvio-tidal floods of moderate severity (Adnan et al., 2019).
However, the separation of floodplains from adjacent rivers caused
geomorphological changes in the polder areas, exacerbating land sub-
sidence inside polders (Auerbach et al., 2015). Accelerated land sub-
sidence and inadequate drainage are accountable for frequent pluvial
flooding (locally called ‘waterlogging’) (Adnan et al., 2019).

Generally, the construction of structural flood control measures,
such as polders, shapes the pattern of human settlements and land use,
which in turn impacts the extent of flood risk. Such flood control
measures create the so-called “levee effect” (White, 1945). Whilst
people tend to settle in less flood-prone areas, presence of structural
flood defence system encourages floodplain development by en-
gendering a sense of safety (Di Baldassarre et al., 2013; Montz and
Tobin, 2008). Therefore, the failure of structural systems in the form of
overtopping or breaching of embankments may exacerbate flood da-
mages (Hui et al., 2016).

The pattern of land use/land cover (LULC) in the coastal region of
Bangladesh has experienced major changes over the past half-century,
following the construction of polders (Abdullah et al., 2019; Huq et al.,
2015; Khan et al., 2015; Parvin et al., 2017; Rahman et al., 2017). Such
changes largely occurred due to frequent and diverse natural hazards
(e.g., floods) and increases in inundation, soil salinity, and land erosion
(Brouwer et al., 2007; Khan et al., 2015). For instance, about 1% of
agricultural land along the south western coast was transformed into
non-agricultural use in each year over the past four decades due to the
occurrence of frequent flooding (Rahman et al., 2017). The transfor-
mation of agricultural land to shrimp culture has been a common
practice in the area since the 1980s as it can be more profitable (Khan
et al., 2015). However, such land transformation has reportedly been
leading to an increase in soil salinity, reducing agricultural production
(Khan et al., 2015; Rahman et al., 2017).

Whilst anthropogenic drivers profoundly change the pattern of
LULC, such transformation of land may affect local flooding processes
(Wheater and Evans, 2009). The pattern of LULC determines the
amount of runoff generated during a precipitation event, thus, influ-
encing the water balance in an area. Hence, LULC may affect both the
probability of flooding and its consequences (McColl and Aggett, 2007;
Szwagrzyk et al., 2018). Flood losses are not only dependent on extreme
hydro-meteorological conditions of a region, unplanned land use can
multiply property damages (Lee and Brody, 2018). In coastal Bangla-
desh, unplanned LULC change may lead to environmental degradation
such as soil salinization, disappearance of seasonal lagoons, and dete-
rioration of water quality by increasing salinity (Islam et al., 2015).

Generally, flooding and poverty coexist particularly within rural
communities, as damages caused by recurring flood events deplete as-
sets, negatively impact agricultural incomes and thus lower quality of
life of communities (Dube et al., 2018). It has been hypothesised that
increasing flood risk and unplanned LULC change may create a poverty
trap in the coastal region of Bangladesh (Ahmed, 2018; Borgomeo et al.,
2017), inhibiting long-term development prospects (Parvin et al.,
2017). Marginalised farmers could not generate adequate income
through agricultural activities, whilst being unable to transform their
agricultural land into aquaculture due to high cost associated with such
change (Islam et al., 2015). As a result, they are unable to migrate out
of such areas due to social and economic constraints and related costs
(Dasgupta, 2007).

Regulating LULC change is an intervention to reduce flood risk,
which has been adopted in different coastal cities (Adnan and Kreibich,
2016). Therefore, it is essential to understand the association between
LULC and flood risk. Risk-based flood management approaches have
received attention globally due to recent experience of several
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catastrophic events in many regions across the world (Hall et al., 2015,
2003b; Poussin et al., 2015), as well as the projected increase in the
frequency and severity of flooding due to climate change-induced sea
level rise (Koks, 2018). An empirical analysis of flood risk can support
decision-makers to appraise and sequence investments for flood man-
agement (Dawson et al., 2011; Hall et al., 2003a, 2019; Hino and Hall,
2017; Sayers et al., 2002). The methods used in research and practice
for quantifying flood hazard and vulnerability range from simple ap-
proaches (with numerous simplifying assumptions) to very complex
applications, which are both data and time-intensive and computa-
tionally expensive (Apel et al., 2009; Dewan, 2013).

In the existing literature, the association between flood risk and
poverty has been comprehended primarily by estimating exposure of
poor people to flooding at various geographical scales (Bangalore et al.,
2019; Brouwer et al., 2007; Qiang et al., 2017; Winsemius et al., 2018).
In the case of coastal Bangladesh, a few studies have applied quanti-
tative approaches (based on household survey data) to show how
poverty exacerbates flood vulnerability/risk (Akter and Mallick, 2013;
Brouwer et al., 2007). However, little is known about (i) how the pat-
tern of LULC change influences flood risk at present and in the future;
(ii) what is the association between LULC change and risk of flooding,
and how they impact poverty spatially. We address these questions by
estimating: (i) flood risk in relation to current and future LULC sce-
narios; and (ii) the change in poverty in relation to a change in LULC
and flood risk.

2. Materials and methods

This study was conducted in three stages. First, a model was es-
tablished to analyse spatiotemporal patterns of LULC change and pre-
dict future LULC. Second, pluvial flood hazard was modelled to simu-
late the depth and extent of inundations for various return periods of
monsoonal precipitation. Then flood risk was estimated at each LULC
scenario (historical and future), for different flood return periods.
Finally, a spatial regression model was developed to estimate poverty,
incorporating geographical, environmental, and socio-economic para-
meters including LULC change and flood risk.

2.1. Description of the study area

This study focussed on polders in the south western coast of
Bangladesh. The area includes a total of 44 polders, located in five
coastal districts: Bagerhat, Jessore, Khulna, Pirojpur, and Satkhira
(Fig. 1). These polders were constructed to protect about 5187 km? of
land, where approximately 5.3 million people live (WorldPop, 2017).
The area has a mean elevation of 3.5m and is heavily intersected by
tidal rivers. The area is prone to three types of flooding — pluvial,
fluvio-tidal, and surge floods. Inadequate drainage channels and in-
creasing land subsidence exacerbate frequent pluvial flooding during
the monsoon months (May to September) (Adnan et al., 2019), when
the area receives the maximum amount of precipitation (Fig. 2). A lack
of sedimentation and accelerated compaction within the embanked
area led to a loss of 1.0-1.5m elevation since the construction of
polders in the 1960s (Auerbach et al., 2015). Agriculture, shrimp
farming, and the natural resources of the Sundarban mangrove forest
(located in the south of the study area) are the major sources of live-
lihoods and economy of the inhabitants (Khan et al., 2015). Approxi-
mately 80 % of the total shrimp ponds of Bangladesh are located in
south western coast (Ahmed, 2018). However, increased soil salinity
resulting from the excessive shrimp farming has negatively impacted
crop yield. The situation potentially affects the livelihoods of the
poorest segments of society (Szabo et al., 2016). A risk-sensitive land
use policy would help to alleviate the complex problems of the south
western coast (Rahman et al., 2017). Thus, this study aimed to provide
spatial information on land use change and flood risk, as well as their
association with poverty.
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Fig. 1. South western embanked area of Bangladesh.
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Fig. 2. Box and whisker plot of monthly rainfall (1965-2012) for south western
embanked area.

2.2. Data

This study examined the effects of LULC change and flood risk on
poverty. A range of spatial and hydrometeorological data were used to
model LULC change, assess flood risk, and estimate poverty. A list of
data is given in Table 1. The LULC dataset used in this study is an
updated version of Abdullah et al. (2019). The dataset contains five
classes: agricultural, aquaculture, bare land, built-up area (urban), ve-
getation with the rural settlement, and waterbody. The Advanced Land
Observing Satellite (ALOS) digital elevation model (DEM) (JAXA, 2015)
at 30 m resolution used to derive maps of various geomorphological
parameters (e.g. elevation, slope, curvature) and establish flood hazard
model. The ALOS DEM was used as it is considered to be highly reliable
and freely available DEM, which has a low root mean square error
(1.78 m) in vertical accuracy (Adnan et al., 2020). Hydrometeorological

data were collected from various organisations including Bangladesh
Meteorological Department (BMD), Bangladesh Agricultural Research
Council (BARC), and Water Resources Planning Organisation of Ban-
gladesh (WARPO). This study considered the Wealth Index (WI) as an
indicator of poverty. The WI data was obtained from Steele et al.
(2017).

2.3. Modelling LULC change

This study predicted LULC during 2030 using a combination of lo-
gistic regression (LR), cellular automata (CA), and Markov Chain
models, following an approach by Arsanjani et al. (2013). A similar
modelling approach has been used in several studies for detecting and
simulating LULC change (Ahmed et al., 2013; Kityuttachai et al., 2013;
Mitsova et al., 2011; Shahbazian et al., 2019; Wang et al., 2019). We
applied this approach for following reasons: (i) it can incorporate both
environmental and socio-economic variables; (ii) the model can in-
corporate a wide range of spatial factors; (iii) the LR model can use data
at different scales; and (iv) the CA model can control spatial dynamics
of LULC changes (Arsanjani et al., 2013; Shahbazian et al., 2019).

The CA model uses a principle that areas tend to change to a state
based on the state of their neighbouring areas (Arsanjani et al., 2013). A
CA system includes four components such as cells, states, neighbour-
hoods, and rules (Shahbazian et al., 2019). Cells are defined as the
smallest unit and the state of each cell is determined by its initial state,
the conditions in the surrounding cells, and a set of transition rules
(Arsanjani et al., 2013; Verburg et al., 2004). The CA model in this
study incorporated a LULC change map, transition potential maps cre-
ated using LR models, the change rate calculated in the change analysis
step, and a transition probability matrix predicted for a future year
(using Markov Chain model).
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Table 1
Different data types used in this study.
Data Description Source
1. LULC LULC data of 2005, 2010, and 2019 at 30 m resolution (Abdullah et al., 2019)
2. DEM ALOS DEM of 30 m resolution (JAXA, 2015)
3. Precipitation Gridded (5 km grid points) precipitation data of 10-day temporal resolution from 1965 —2012 (www.bmd.gov.bd/)
4. Climate Monthly average temperature, monthly average daylight hour data from 1988 — 2012, across four weather  (http://www.barc.gov.bd/)
stations
Poverty Gridded Demographic and Health Surveys (DHS) Wealth Index (WI) (Steele et al., 2017)

. Soil salinity

. Population density

. Gross Domestic Product (GDP)
. Agricultural employment

0. Spatial data

Gridded soil salinity index
Total number of people per 100 m grid-cell

=0 ®N O U

Gridded GDP data of 30 arc-sec (~900 m) resolution
Number of people employed in the agricultural sector
GIS vector data of road network, river channels, and growth centre

(Abdullah et al., 2018)
(https://www.worldpop.org)
(Kummu et al., 2018)

(De Bono and Chatenoux, 2014)
(http://www.warpo.gov.bd)

2.3.1. Analysing LULC change

LULC data of 2005, 2010, and 2019 were analysed to detect spa-
tiotemporal changes. The model initially calibrated LULC change over
the period 2005-2010. While developing a LULC change map, the
transition areas less than 5 km? (~0.001 % of total area) were ignored,
otherwise, the modelling approach would have been computationally
expensive. As a result, the 2005-2010 change map included a total of
12 LULC transition categories.

2.3.2. Driving forces for detecting change

The LR models were established for all 12 transitions, to estimate
the degree of influence of different factors (driving forces) on a type of
LULC (Shahbazian et al., 2019). LULC changes could be governed by
various combinations of geographical, environmental, and socio-eco-
nomic factors (Dewan and Yamaguchi, 2009). Based on the knowledge
attained from literature as well as expert knowledge on the study area,
a total of 14 variables were selected (Table 2). For a LULC transition,
the LR model incorporated a binary (change to a LULC class and no-
change) dependent variable and different combinations of independent
variables (driving forces). Combinations of independent variables were
selected in a way that yielded the highest relative operating char-
acteristic (ROC) and adjusted odds ratio values, indicating performance
of the models (Arsanjani et al., 2013).

The LR model creates probability surface maps using the following
equation (Hosmer Jr et al., 2013):

p=1/Q10+e? (€D)]

where p ranges from O to 1 on an S-shaped curve, explaining the
probability of a cell changing to a LULC class; z is the linear combi-
nation of independent variables (driving forces), which was estimated
using the following equation:

Table 2
Driving factors of LULC change from 2005 to 2010.

Z= bo + b1x1 + bzXz + -~-+bnxn (2)

where by is the model intercept, b; (i = 1, 2, ..., n) indicates the coef-
ficients of independent variables, and x; (i = 1, 2, ..., n) represents the n
number of independent variables.

2.3.3. Simulating future LULC

The CA-Markov Chain model was used to predict LULC change
based on the estimated transition probabilities (Arsanjani et al., 2013;
Shahbazian et al., 2019). The Markov Chain model predicted the
quantity of change in each LULC transition. Based on the Bayes’ the-
orem of conditional probability, LULC was predicted using the fol-
lowing formula (Sang et al., 2011):

S(t+1)= B x S(t) 3)

where S(t) and S(t + 1) are the LULC status at the time t and t + 1,
respectively; the transition probability matrix P; was estimated as
follow:

Py, Py .. P
P = Py Py ... Pu
Pnl Pnz Pnn

n
0<Pi<land ) Bj=1, (0, j=123, ..n)
J=1 (4)

where n is the total number of LULC classes. In this study, probability
values of 2019 and 2030 were predicted based on transition matrices of
2005-2010 and 2010-2019, respectively. However, the spatial dis-
tribution of LULC in a Markov Chain model is unknown. Therefore, the
CA model was integrated to provide a spatial dimension to the model
(Arsanjani et al., 2013; Corner et al., 2014; Shahbazian et al., 2019).

Factors Regression coefficient

Agriculture to aquaculture Agriculture to rural settlement Agriculture to built-up area (urban)
Intercept 1.41 1.25 9.53
Elevation —0.02 0.11 —-0.37
Slope —1e® 2e~%° —2e%*
Curvature 0.05
Flood frequency 0.69 0.19 0.43
Distance from aquaculture land —0.34
Distance from existing road —0.04 —0.05 —0.06
Distance from residential area —-0.07 —2.42
Distance from adjacent river —-0.11
Distance from drainage channel —0.35
Distance from growth centre 0.07 0.11
Soil salinity 0.39 0.25
Distance from northing coordinates -0.19 -0.31 —0.09
Distance from easting coordinates —0.003 0.10
Population density -0.21 0.05 0.18
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2.3.4. Validating the outputs

The LULC change model was validated for the year 2019. Therefore,
considering LULC maps of 2005 and 2010 as the initial and final state
maps, the model predicted LULC map of 2019. We compared predicted
LULC map with observed data of 2019. Kappa statistic was estimated to
determine the degree of agreement between observed and modelled
LULC maps (Mitsova et al., 2011).

2.4. Flood risk assessment

Flood risk assessment was carried out for various LULC scenarios to
estimate temporal changes of direct economic damage due to floods of
various magnitudes. The risk was defined as the product of flood ha-
zard, exposure, and vulnerability. The expected annual damages (EAD)
at different LULC scenarios were estimated to represent spatiotemporal
pattern of flood risk (Rojas et al., 2013).

2.4.1. Flood frequency analysis

This study primarily focused on pluvial flooding, considering in-
creased frequency and severity of this type of flooding in the study area.
Although historically, three types of flooding (pluvial, fluvio-tidal, and
storm surge induced flooding) affect the study area, occurrence of
pluvial flooding is a relatively recent and frequent phenomenon. Adnan
et al. (2019) documented that monsoon precipitation caused inunda-
tion in the area every year from 1988 to 2012. Persistent pluvial
flooding damages crops and therefore impacts the livelihoods of people
who inhabit the south western coast (Alam et al., 2017).

Flood frequency analysis was carried out to estimate return periods
of monsoon precipitation, which is the main source of pluvial flooding
in the study area (Adnan et al., 2019). Seven recurrence intervals (i.e. 1,
2, 5, 10, 20, 50, and 100 years) of floods were considered here. In-
undation depth was estimated at each cell within the study area. Since
pluvial flood hazard model takes monthly precipitation as an input, we
generated raster layers of monthly precipitation of seven return periods.
To decide whether the climate in the near future (i.e. 2030) is likely to
be in a ‘changed’ or ‘unchanged’ state, a precipitation trend analysis
was performed. Therefore, linear regression models of monthly pre-
cipitation were established (Panda and Sahu, 2019). We also applied an
autocorrelation function (ACF) to estimate whether monthly total pre-
cipitation was autocorrelated between years (Feng et al., 2016). No
significant autocorrelation was found between successive years. The
linear regression models confirmed the absence of a significant trend in
monthly precipitation. The results of precipitation trend analysis are
summarised in Table S3 and Figure S1 (see supplementary document).
To generate monthly precipitation layers of seven return periods, ex-
treme value analysis was conducted at each grid cell by fitting a gen-
eralized extreme-value (GEV) distribution using the L-moment method,
following Adnan et al. (2019).

2.4.2. Flood hazard assessment

Flood hazard assessment included a hydrological simulation of
floods of various return periods (Rojas et al., 2013). Inundation maps
were also derived for seven recurrence intervals of monsoon pre-
cipitation — 1, 2, 5, 10, 20, 50, and 100 years — using a pluvial flood
rainfall-runoff and spreading model established for the study area by
Adnan et al. (2019). The modelling process started with estimating
monthly water balance. A Thornthwaite and Mather water balance
model was accompanied by the flood model, which estimated monthly
excess precipitation at each grid cell, after subtracting evapo-
transpiration from monthly total precipitation. Monthly excess pre-
cipitation layers from May to September were aggregated to prepare
excess precipitation layers during the monsoon. The inundation model
incorporated the ALOS DEM to identify depressions and their catch-
ments. During a flood event, the estimated total volume of excess
precipitation was assigned to each depression according to the re-
spective catchment position to represent both flood depth and extent.
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Further description of the model, validation process and sensitivity
analysis can be found in Adnan et al. (2019). The flood hazard mapping
resulted in inundation maps of seven recurrence intervals.

2.4.3. Flood vulnerability analysis

Flood vulnerability assessment generally includes the estimation of
direct or indirect damages due to floods. Direct damages, which pri-
marily occurred because of physical contact of houses, building, and
public infrastructures with floodwater, are estimated as a function of
flood depth in different cells, the relationship between flood depth and
LULC (or structural use), and total cell area (Apel et al., 2009). Indirect
damages can be an outcome of the failures of critical infrastructure
systems, such as transportation, production, and energy (Koks et al.,
2019). The scope of the study was however limited to estimating direct
flood damages. It was estimated for three types of LULC (i.e. agri-
culture, aquaculture, and residential) using the following equation
(Islam et al., 2019):

Dj = (zn: X Xf(xl-)] X A

i=1

)

where D; is the total damage (in million USD ($)) during a flood return
period of j, x; is the flood depth (m) in cell i, f(x;) is the damage function
for the flood depth level x in cell i, and A is the area of a cell. Global
depth-damage curves, adopted from Huizinga et al. (2017), were used
to estimate direct tangible flood damage to residential and agricultural
LULC. The depth-damage curve for aquaculture lands was obtained
from Islam et al. (2019) (Fig. 3). The maximum damage values in
depth-damage functions were given in Euro, which we converted into
USD using a currency conversion rate of 1 Euro = 1.11 USD.

Pixel-scale (30 m resolution) flood damage was estimated in a GIS
for seven flood return periods (1, 2, 5, 10, 20, 50, and 100-year) at four
LULC scenarios of 2005, 2010, 2019, and 2030. Inundation maps (see
section 2.4.2) were overlaid on LULC maps to record flood depth and
LULC according to each pixel. This dataset was imported in an R
package and integrated with Eq. 5 to estimate pixel-scale flood damage,
as well as total damage of the study area.

2.4.4. Estimating flood risk

Following flood hazard and vulnerability assessments, risks were
estimated in the form of expected annual damage (EAD) for four LULC
scenarios (2005, 2010, 2019, and 2030). The EAD can be estimated
using the following equation (Olsen et al., 2015):

EAD = [ D(p)dpda
Ap (6)

where D(p) is the damage occurred during an event with the annual
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Fig. 3. Depth-damage curves (adopted from Huizinga et al. (2017) and Islam
et al. (2019)).
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probability of exceedance p (approximated by the inverse of the flood
return period (7)), A is the total area of the area under study. Since the
choice of return periods influences flood risk estimates, a consideration
of all return periods between the low and high probability floods en-
ables an accurate estimation of risk (Ward et al., 2011). The probability
space of flood risk for each integer year flood return period between 1
and 100 is discretised into 100 equal intervals, by interpolating flood
damages estimated between seven recurrence intervals (Rojas et al.,
2013). An exceedance probability curve was developed by plotting
flood damages against corresponding exceedance probabilities. The
exceedance probabilities of 0.01 (100-year) and 1 (1-year) were con-
sidered correspondingly as the lower and upper limits of the probability
curve. The EAD was estimated as the area under the curve (AUC), ap-
plying the trapezoidal rule given in Eq. 7 (Olsen et al., 2015).

1w (1 1
EAD = EZ (f_ - TEH)(Di + Diy1)
i=1

)

where n is the total number of return periods which is 100; T; is the
return period of the i* event; D; is the estimated flood damage during
the i" event.

2.5. Downscaling poverty data

Flood damage may exacerbate the degree of poverty in a region,
whilst poor people may be compelled to live in riskier locations (Dube
et al., 2018). This study aimed at investigating the spatiotemporal
distribution of poverty, diagnosing its association with flood risk and
LULC change. Steele et al. (2017) developed a gridded poverty dataset
for Bangladesh, combining data from multiple sources such as mobile
phone, satellite, and traditional survey. The spatial scale of the database
was determined by developing the service area coverage of a cellular
network using the Voronoi polygons. The spatial resolution of the data
varies from 60m to 5km, where poverty was represented as asset,
consumption, and income-based measures of wellbeing. In this study,
we considered the asset-based measure, i.e., Demographic and Health
Surveys (DHS) Wealth Index (WI), because the WI yielded the highest
accuracy of predictions than other poverty metrics (Steele et al., 2017).
The WI is a measure of household’s living standard that is calculated
using survey data on household characteristics (e.g. material used for
housing construction), ownership of selected assets (e.g., television,
bicycles), and access to different facilities such as water supply and
sanitation (https://www.dhsprogram.com). The values of the WI can be
either positive or negative, where a higher value implies higher socio-
economic status (Steele et al., 2017).

We downscaled the gridded WI data obtained from Steele et al.
(2017), establishing a GIS-based ordinary least square (OLS) model (Eq.
8) based on ten spatial parameters (Table 4). The south western em-
banked area is comprised of 303 Voronoi polygons. The polygons were
used to extract the values of all parameters.

y=B+BX + X+ .. +B,X, + ¢ (8)

where y is the WI, X, is the value n* parameter, f8 is the regression
coefficient, and ¢ is the random error in prediction or residuals.
Spatial parameters included soil salinity, elevation, EAD, relative
flood frequency, distance from northing and easting coordinates, LULC
change, population density, GDP, and the number of people employed
in the agricultural sector. The selection of parameters was based on
their (i) role in influencing poverty (ii) availability as gridded data. Soil
salinity impacts poverty as increasing salinity in the coastal region
hinders agricultural activity (Szabo et al., 2016). A map of relative flood
frequency was collected from Adnan et al. (2020). To represent ground
elevation, ALOS DEM was used. The EAD map developed in this study
(see section 2.4.4) was included in the regression model. A binary
(change or no-change) LULC change map from each previous time step
was incorporated. Two layers, representing the Euclidean distance from
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northing and easting lines were produced, to understand the spatial
distribution of WI. GDP indicates the extent of human and economic
development of a country, may influence WI. Gridded GDP data was
extracted for the study area from a global dataset developed by Kummu
et al. (2018). The dataset has a spatial resolution of 30 arc-sec
(~900m) and generated for years 1990, 2000, and 2015. Using the
GDP data of 2015, we projected the GDP of 2010, 2019, and 2030,
incorporating existing and projected GDP growth rates provided by the
World Bank and the International Monetary Fund (IMF), respectively.
Sources of gridded soil salinity, population density, and agricultural
employment data are given in Table 1.

The year 2010 was considered as a base year for this analysis, as WI
data was developed based on 2011 DHS and 2010 Household Income
and Expenditure (HIES) survey data. Performance of the model was
determined by estimating the coefficient of determination (R?). The
generated OLS regression equation was used to predict WI for the year
2019 and 2030. Therefore, four independent variables were adjusted
accordingly: The EAD, LULC change, population density, and GDP,
while other variables were assumed to be constant.

3. Results
3.1. LULC change modelling

3.1.1. Temporal change of LULC

Fig. 4(a) shows temporal changes of observed LULC from 2005 to
2019 and their spatial variations are presented in Figure S2 (see sup-
plementary document). From 2005-2010, a significant decrease in
agricultural land was observed, while the proportion of aquaculture
category increased substantially. More than 50 % of agricultural lands
transformed into aquaculture use, with another 25 % into rural settle-
ments. Contrarily, LULC change from 2010 to 2019 was relatively
stable, when the main transformation took place in bare land; about 23
% bare land area transformed into rural settlements. Stable growth in
rural and urban settlements was observed between the years 2005 and
20109.

3.1.2. Driving factors

Various combinations of geographical, environmental, and social
factors account for different types of LULC transition. Table 2 shows
regression coefficients of different factors influencing the transforma-
tion of agricultural lands into aquaculture, rural, and urban use within
2005-2010. The probability of LULC change from agricultural to
aquaculture use is higher in areas characterised by low elevation,
concave curvature, frequently affected by flooding, located in proximity
to existing aquaculture lands, roads, and drainage channels, high level
of soil salinity, and located in the northern portion of the study area.
Notably, we found a positive correlation of flood frequency with LULC
change from agriculture to rural and urban settlements. About 57 % of
the study area was inundated by at least two historical flood events
from 1988 to 2012 (Adnan et al., 2020). Therefore, substantial devel-
opment of the residential area took place in the flood-prone zones. A
summary of LR models of the remaining nine LULC transitions is given
in Table S1 of the supplementary document.

The performance of each LR model is indicated by the estimated
ROC and odds ratio (Table 3). A ROC value 1 indicates a perfect fit and
ROC value 0.5 represents a random fit. Also, a higher adjusted odds
ratio indicates a better performance of a model (Arsanjani et al., 2013).
In this study, the LR model for LULC transformation from agriculture to
aquaculture cover obtained highest estimates of these performance in-
dicators.

3.1.3. Predicting LULC

The combination of LR and CA-Markov chain model determined
LULC quantitatively, where the LR model generated probability sur-
faces of different transitions, the Markov chain model predicted the
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Table 3

ROC and adjusted odds ratio values of LR models.
*Transitions ROC Adjusted odds ratio
LULC -1 to LULC -2 0.93 81.27
LULC -1 to LULC -3 0.71 5.23
LULC -1 to LULC -4 0.91 24.67
LULC -1 to LULC -5 0.73 4.60
LULC -1 to LULC -6 0.89 17.82
LULC -2 to LULC -3 0.74 8.10
LULC -3 to LULC -1 0.67 4.28
LULC -3 to LULC -2 0.89 14.38
LULC -3 to LULC -5 0.68 2.96
LULC -5 to LULC -1 0.63 2.07
LULC -5 to LULC -2 0.93 35.74
LULC -5 to LULC -3 0.82 9.81

* LULC -1= Agriculture; LULC -2 = Aquaculture; LULC -3 = Bare land; LULC
-4 = Built-up area (urban); LULC -5 = Vegetation with rural settlement; LULC
-6 = Waterbody.

quantity of change in each LULC transition, and the CA model con-
trolled the spatial dynamics the projected LULC. The Markov chain
model estimated the transition probability of 2030 based on the tran-
sition matrix 2010-2019 (Table S2, supplementary document). The si-
mulation suggests that the proportion of agricultural land, bare land,
and general waterbody is likely to decrease, while aquaculture lands, as
well as rural and urban settlement areas, would increase (Fig. 4a). In
the case of the spatial distribution of different categories of LULC,
aquaculture is likely to remain as the dominant type of LULC in
northern and western segments of the study area given its economic
return. Agricultural activities would mostly take place in the eastern
segment, where “vegetation with rural settlement” is likely to be the
dominant LULC category (Figure S2, supplementary document). The
validation process yielded a kappa coefficient of 0.87, which indicates
an acceptable degree of accuracy. However, the choice of driving forces
affects the accuracy of the model (Wang et al., 2019). Although dif-
ferent environmental and socio-economic factors were considered in

Table 4
Estimated regression coefficients for downscaling wealth index (WI) data.
Variables Coefficient ~ Standard t-value  VIF  p-value
error
Intercept —2.984 0.536 —5.572 0.000%**
Soil salinity —-0.125 0.136 —-0.925 2.70 0.317
Land elevation 0.042 0.009 4.472 3.08 7e 06w
EAD —0.016 0.007 —-2.153 1.14 0.0373*
Relative flood frequency — —0.324 0.181 -1.791 1.81 0.059
Distance from northing —0.132 0.018 —7.481 1.59 0.000***
coordinates
Distance from easting 0.151 0.028 5.345 3.07  0.000***
coordinates
LULC change -0.213 0.091 —2.336 1.40 0.003**
Population density 0.182 0.012 14.754 1.68 0.000***
GDP 0.012 0.005 2.520 1.31 0.013*
Agricultural 0.298 0.039 7.342 1.40  0.000***
employment
R* 0.81

Significance level: 0 “***’ 0.001 “** 0.01 ‘*’ 0.05 ‘w’ 0.1 “ 1.

this study, a limited number of driving forces may have resulted in
some errors in the predicted LULC.

3.2. Association between LULC change and flood risk

3.2.1. Flood damage

Flood damages are associated with the type of LULC in the study
area. Fig. 4(b) shows estimated damages during floods of different re-
currence intervals, under four LULC scenarios. An increasing trend of
flood damages was estimated, with changes in recurrence intervals and
LULC scenarios. The estimated average damage (across all recurrence
intervals) of $1180 million in 2005 is likely to increase by the year
2030 to $2601 million. From 2005-2010, the highest increase of flood
damage was estimated at $839 million for a flood event with a 50-year
return period. Within this period, a significant transformation of LULC
was observed, which resulted in a decrease in agriculture lands and an
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increase in aquaculture land (Fig. 4(a)).

3.2.2. Flood risk for various LULC scenarios

An exceedance probability curve in Fig. 4(c) and estimated EAD in
Fig. 4(d) indicates contribution of LULC change to flood risk. Notably,
in Fig. 4(c), the difference of flood losses between the highest and the
lowest exceedance probabilities does not vary greatly. In 2005, damage
of $809 million was estimated for the median annual maximum flood
event (an event with a 2-year return period). The damage increased to
$1591 million when the exceedance probability reduced to 0.01. In
2030, damages may range from $1586 million to $3384 million for
floods with annual exceedance probabilities from 1 to 0.01, respec-
tively. A relatively small difference in estimated damages between the
low and high probability floods is because even frequent floods (e.g. the
median annual maximum) cause a substantial extent of inundation, and
thus, significant damages (Fig. 4(b)). With an increase in the magnitude
of precipitation, depths in the inundated areas tend to increase sub-
stantially, rather than the extent of inundations. We estimate that the
extent of inundation may range from 5% area (for the 2-year return
period flood) to 15 % area (for the 100-year flood).

LULC change has resulted in increased exposure primarily of re-
sidential (rural and urban) and aquaculture lands, which may result
higher flood risk in the future. The EAD of the year 2005 was estimated
to be approximately $903 million, which may be more than twice
($2096 million) by the year 2030 (Fig. 4(d)), assuming persistent LULC
change in the future.

3.3. Association among LULC change, flood risk, and poverty

Table 4 summarises the results of the OLS regression model, de-
veloped to explain the degree of influence of different parameters on WI
in the study area. Among the ten factors included, nine were found to
be statistically significant. The estimated regression coefficients in-
dicate that the WI was relatively higher in areas where land elevation,
population density, and GDP are high, as well as a larger number of
people employed in agriculture. Conversely, higher soil salinity, EAD,
flood frequency, and LULC change negatively affected the WI. The re-
gression coefficients were incorporated in Eq. 8 in a GIS to estimate WI
at each pixel, encompassing the study area. The estimated R? in
Fig. 6(c) exhibits the performance of the model. The R? value of 0.81
indicates an acceptable level of agreement between observed versus
modelled WI values for 2010.

The WI of the study area was classified according to five categories
using the Jenks scheme (Fig. 5). During the base year of 2010, most of
the south western zone (about 58 %) was classified as areas with ‘low’
and ‘very low’ level of WI. Relatively, a higher WI was observed in the
northern and western segments of the study area (Fig. 5(a)). The si-
mulation showed a potential increase in WI in the year 2019 and 2030
(Fig. 5(b and c)). Figure S3 in the supplementary document compares
the spatial distribution of WI in 2010 between the disaggregated data
created in this study and the WI grid developed by Steele et al. (2017).

Areas classified as ‘very low” WI would potentially decrease from 15
% area in 2010 to about 6% area in 2030, while the proportion of areas
with ‘moderate’ WI may increase from 30 % to 46 %, respectively.
However, the rate of increase in the proportion of areas classified as
‘high’ and ‘very high’ WI was estimated to be insignificant (Fig. 6(a)).
The proportion of total area with positive WI (‘high’ and ‘very high’
categories) is likely to increase from 11 % in 2010 to 18 % in 2030.
Bangladesh has an increasing GDP per capita growth, which was about
6.9 % annually, on average, from 2010 to 2019. Population density has
also been projected to increase in the future. Although these two vari-
ables exhibited a positive correlation with WI, LULC change and in-
creasing EAD may hinder the growth of the WI in 2030. The estimated
WI of 2010, 2019, and 2030 were disaggregated at the polder scale to
identify marginalised polders at present and in future (Fig. 6(b)). In
general, more than 50 % of the total area in most of the polders were
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classified as zones with ‘low’ and ‘very low’” WI. In 2010, there were 19
polders where more than 50 % area was classified as ‘moderate’ to ‘very
high’. Nonetheless, the numbers increased in 2019 and 2030 for which
correspondingly 21 and 34 polders were identified, with the majority of
the area (> 50 %) classified as ‘moderate’ to ‘very high’ WI.

4. Discussion

Monitoring and managing LULC changes have been recognised as an
essential geographic phenomenon for guiding socio-economic devel-
opment (Corner et al., 2014; Shahbazian et al., 2019). This study ana-
lysed and simulated LULC changes in the south western embanked area
of Bangladesh to understand their association with flood risk and
poverty. The study results indicated that the proportion of agricultural
lands decreased significantly between 2005 and 2019. This result is
similar to a few other studies that focused on LULC changes in south
western Bangladesh (Islam et al., 2015; Khan et al., 2015; Rahman
et al., 2017). A significant reduction of agricultural lands is reportedly
associated with growing prevalence of shrimp farming, which reflects a
socio-economic trend whereby land-owners near existing shrimp farms
are more likely to convert to shrimp, together with the effect of salinity
intrusion, in particular following surge flood events, which forced
farmers to transform their agricultural lands into aquaculture use (Islam
et al., 2015; Khan et al., 2015). The projection of future LULC indicated
a potential increase in settlement areas, while bare lands are likely to
decrease. Such LULC transformation may follow a pattern which was
observed from 2010 to 2019. Rahman et al. (2017) also predicted a
similar pattern of LULC change by 2028 in a small administrative unit
(‘upazila’) of the south western coast. They explained that the natural
increase of settlement and vegetation may lead to such changes in
LULC.

Simulating future LULC is subject to uncertainty (Szwagrzyk et al.,
2018). Although combined LR and CA-Markov Chain model considers a
wide range of driving forces, it does not incorporate exogenous cov-
ariates such as personal preferences and government regulations
(Arsanjani et al., 2013). For instance, lower market price, higher pro-
duction cost, and increased frequency of diseases caused a decline in
benefits in brackish water shrimp farming in the last decade (Akber
et al.,, 2017). Although aquaculture was perceived as oneof the few
options for economic development (Akber et al. 2017), intensive
aquaculture andsubsequent salinity intrusion may result in poverty,
promoting rural unemployment, socialunrest, conflicts and forced mi-
gration (Johnson et al., 2016). Despite a reduction in brackish water
shrimp cultivation in recent years, mixed cultivation of sweet water
shrimp and fish has proved to be beneficial, which may persist in future.
Therefore, in the current study, we considered the trend of LULC
change in the last decade to predict future LULC. An alternative to the
current LULC change model, an Agent Based Model (ABM) can in-
corporate individual-related factors, an approach which has been fol-
lowed in recent studies to model LULC change (Arsanjani et al., 2013).
However, the main limitation of the ABM is that it requires a large
sample of empirical data to parameterise the model (Valbuena et al.,
2010). In summary, LULC change modelling is a complex process and
therefore, results should be used with caution (Wang et al., 2019). For
example, areas predicted to be transformed into settlements by the
LULC model should be interpreted as areas most suitable for future
settlement development, rather than the precise locations of future
change (Szwagrzyk et al., 2018).

Notably, this study found a positive association between LULC
change and losses caused by floods for various recurrence intervals. A
lack of risk-oriented residential development might be associated with
increased flood risk. The majority of rural houses are temporary or
semi-permanent structures (Akter and Mallick, 2013). Exposure of
those areas to floods results in significant damages. Similar evidence of
residential development in wetlands in recent years can be found in the
existing literature (Akber et al., 2018). Aquaculture lands, comprised of
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shrimp or freshwater ponds, can withstand a certain depth of flood-
water (i.e. < 2m). However, when the depth increases, shrimp or fish
may escape and cause financial losses (Islam et al., 2019).

We found that pluvial floods that occur each year cause substantial
damage in the south western embanked area. This more or less in-
evitable flood damage is attributed to geomorphological characteristics
of the study area. Land subsidence in the embanked area created de-
pressions, which are prone to frequent pluvial flooding. Therefore,
annual monsoon precipitation causes a substantial extent of inundation.
For instance, a monsoon precipitation event of 2.1-year return period in
1990 inundated about 9.3 % of the total area (Adnan et al., 2019). From
2009-2014, pluvial flooding in Khulna Division (where the study area
located) caused greater damage than any other natural hazards (BBS,
2015). Frequent pluvial flooding in the south western embanked area
causes both damages to crop and delay to winter crop cultivation (Alam
et al., 2017).

This study further presented a spatially explicit regression model to
estimate poverty in terms of the WI. The results indicated a positive
correlation of GDP and population density with the WI. A similar pat-
tern of association of these parameters with poverty was reported
elsewhere (Dasgupta, 2007). The results of poverty modelling in this
work highlighted that the rate of increase of WI is likely to be low in the
future because of the pattern of LULC change and associated increase in
flood risk. Few other studies have quantified the association between
poverty indicators and flood risk/vulnerability (Akter and Mallick,

2013; Brouwer et al., 2007). Those studies were based on household-
level survey data, where poverty was considered as an indicator of flood
risk.

5. Conclusion

This study quantified the degree of influence of LULC change and
flood risk on poverty in the south western embanked area of
Bangladesh. Poverty was estimated, in terms of WI, for the present-day
and for future LULC and flood risk scenarios. The analysis indicated that
the area has been experiencing a rapid LULC change, resulting in a
significant decrease in agricultural lands, while the proportion of
aquaculture lands increased consequently. Based on the recent pattern
of changes, LULC was predicted for the year 2030. The study further
demonstrated that losses due to floods of various recurrence intervals
have increased with LULC change. The exposure of residential areas
(rural and urban) was predicted to increase in future. A lack of attention
to flood is risk in land development decisions may explain the increased
flood loss. Likewise, the expected annual flood damage (EAD) was also
estimated to increase in the future LULC scenario. Moreover, we further
estimated that LULC change and EAD negatively influence WI, which
may restrict the growth of the WI in the future. The area with negative
WI is predicted to decrease from 89 % area in 2010 to 82 % area in
2030, which is slower than one might expect given Bangladesh’s pre-
dicted GDP growth. This is because flood risk and patterns of LULC
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change have a negative effect on WI. Among 44 polders analysed, more
than 50 % area in 11 polders would potentially have ‘low’ and ‘very
low’” WL

When interpreting the findings of this study, uncertainty related to
flood damage functions and values of input parameters for poverty
estimation should be considered. We considered global flood depth-
damage functions for different LULC, due to the unavailability of micro
(local)-level functions. We estimated flood losses for different cate-
gories of LULC, as building-level land use data are not available for all
of the study area. While describing uncertainty in flood depth-damage
function, Huizinga et al. (2017) highlighted that materials of structures
primarily determine the maximum damage that may occur during a
flood. In this study, the accuracy of the projected WI depends on the
accuracy of input parameters. Parameters value (e.g. soil salinity and
flood frequency) which were assumed to remain constant in may
change in the future. The dynamics in soil salinity may also change in
future climate change scenarios. Although few studies focused on
modelling soil salinity in coastal Bangladesh under future climate
change scenario (Dasgupta et al., 2015; Payo et al., 2017), the coarser
resolution of their results restricted this study to incorporate such data
in estimating WI. However, the statistical significance of salinity re-
mains low. Also, GDP and population density were projected for the
future year considering national-level growth rates, which may vary at
the local scale such as polder level.

This study highlights that the absence of risk-oriented land use
planning is potentially increasing flood risk in the coastal region.
Various national and regional level policies of Bangladesh have ad-
dressed this issue and express the need to formulate land use plans
following a risk-based approach. For instance, the Coastal Development
Strategy focused on developing a coastal land use plan. More recently,
the Bangladesh Delta Plan (BDP) 2100 emphasised the adoption of
measures to mitigate flood risk, to achieve a long-term goal of reducing
poverty and ensuring sustainable livelihoods (Khan, 2018). Spatial in-
formation on flood risk and land use changes provided in this study
should inform stakeholders such as the Ministry of Land in identifying
areas required land use policy intervention. Also, the proposed meth-
odology to assess the implications of changing land use and flood risk
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for poverty should be of interest to land use planners. The results can
help target policies in areas with greater poverty at present and in fu-
ture scenarios. To the best of our knowledge, this study is the first at-
tempt to model spatiotemporal change of poverty with changes in land
use and flood risk. Although many studies focused on land use change
modelling and/or flood risk assessment, there is a dearth of studies that
quantify their combined influence on local level poverty.
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