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Two Landsat images, acquired in 1987 and 2008, were analyzed to evaluate desertification processes in
central North Kurdufan State (Sudan). Spectral Mixture Analysis (SMA) and multitemporal comparison
techniques (change vector analysis) were applied to estimate the long-term desertification/re-growing of
vegetation cover over time and in space.

Site-specific interactions between natural processes and human activity played a pivotal role in
desertification. Over the last 21 years, desertification significantly prevailed over vegetation re-growth,
particularly in areas around rural villages. Changes in land use and mismanagement of natural
resources were the main driving factors affecting degradation. More than 120,000 km? were estimated as
being subjected to a medium-high desertification rate. Conversely, the reforestation measures, adopted
by the Government in the last decade and sustained by higher rainfall, resulted in low-medium re-
growth conditions over an area of about 20,000 km?.

Site-specific strategies which take into account the interactions of the driving factors at local scale are
thus necessary to combat desertification, avoiding any implementation of untargeted measures. In order
to identify the soundest strategies, high-resolution tools must be applied. In this study the application of
spectral mixture analysis to Landsat data appeared to be a consistent, accurate and low-cost technique to

identify risk areas.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Desertification is defined as land degradation in arid, semiarid
and dry sub-humid areas due to climate variation and/or human
activity (UNCCD, 1994). The three major land use systems prone to
desertification in arid and semiarid areas are rangeland, rain-fed
croplands and irrigated lands. Degradation of vegetation cover by
overgrazing and the cutting of woody plants for fuelwood, build-
ings, bush fencing and other purposes is the common desertifica-
tion process in rangeland (Mustafa, 2007). On rain-fed croplands,
wind and water erosion are accelerated by cropland preparation,
which involves removal of the native vegetation cover, woodcut-
ting or grass burning. High concentrations of salts in the root zone
associated with the introduction of irrigation in dry areas
(secondary salinization) have caused desertification due to salts
rising with the rise in ground water level (Singh, 2009).

Four aspects must be evaluated in order to render the deserti-
fication process measurable (FAO-UNEP, 1984): status, which is
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defined as the state of a particular piece of land at a specific time
compared with its condition in the past; rate, which refers to
the change in the condition over time; inherent risk, which is
a measure of the vulnerability of landscape to a desertification
process; and hazard, which is the overall rating considering the
previous three aspects. To make the assessment easier, several
Authors have attempted to determine appropriate indicators.
Environmental indicators over large areas must be measurable and
suitable for regular updating. Few of the proposed indicators are
specifically for dryland degradation alone, because it is difficult to
separate the effects of climatic factors from those of human activ-
ities in such areas (Diouf and Lambin, 2001; Mabbutt, 1986; Rubio
and Bochet, 1998).

Difficulties have also arisen because the interpretation of the
UNCCD desertification definition can differ greatly according to the
choice of indicators. Soil erosion and sedimentation, perennial
plant cover and biomass have been used as indicators of the
desertification status (Le Houerou, 2006). However a recent survey
among 90 experts has recognized the long-lasting loss of vegeta-
tion cover and productivity over time and in space as the key
indicator/variable of desertification (Hellden, 2008).
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One of the most effective tools for desertification assessment is
remote sensing. It has long been suggested as a time and cost
efficient method for observing dryland ecosystem environments
(Hassan and Luscombe, 1990), monitoring land cover degradation,
as well as characterizing the dynamism of sand dunes (Collado
et al., 2002).

Most remote sensing in arid regions has concentrated on optical
remote sensing techniques which use data from sensors that collect
radiation in the reflected solar spectrum. Two main approaches
are usually followed (Dawelbait and Morari, 2008; Smith et al.,
1990): a) calculation of vegetation indices; b) image classification.

A relationship between plant biomass and a standardized vege-
tation index can be established (Tucker, 1979). Vegetation indices,
reviewed by Jackson et al. (1983), Tueller and Oleson (1989) and
others, are generally based on ratios of the radiance in the red
and infrared spectral bands, chosen to maximize the reflectance
contrasts between vegetation and other materials. The Normalized
Difference Vegetation Index (NDVI) has been most commonly used
to map spatial and temporal variation in vegetation (Tucker, 1979).
NDVI is sensitive to pixel-level changes in greenness and fraction of
photosynthetically active radiation absorbed but is not differentially
sensitive to change in vegetation cover versus vegetation condition
(i.e. the vigour, photosynthetic capacity or stress of vegetation
canopy or cluster). This means that when an NDVI change occurs, it
cannot be readily determined whether or not it was caused by
altered vegetation cover or condition of cover (Asner, 2004). More-
over, NDVI has only limited success in providing accurate estimates
of shrubland cover in arid areas and limited utility in an arid
ecosystem. This is due to spectral variability of background materials
such as soil and surface litter and the strength and variation of
soil spectral albedo, which causes nonlinearity in the relationship
between NDVI and vegetation characteristics (Asner, 2004; Huete,
1988; Huete et al., 1992).

Image classification usually relies on statistical methods
including maximum-likelihood, clustering and discrimination
analysis or methods based on principal components analysis (PCA)
(Smith et al., 1990). PCA is used to identify a change in heteroge-
neity. However, to obtain an accurate measurement the pixel size
must be smaller than the scale of variability of at least one of the
principle landscape elements (e.g. grasslands).

Spectral mixture analysis (SMA) is a sub-pixel classification
technique which could be use to unmix the soil-plant canopy
measurements into the respective soil, vegetation, and non-
photosynthetic vegetation (Smith et al., 1990). SMA depends on
the spectral response of land cover components. The spectral
response in remote sensing from open canopies is a function of the
number and type of reflecting components, their optical properties
and relative proportions (Adams et al., 1995). SMA appears to be the
most efficient technique to obtain information on vegetation cover,
soil surface type and vegetation canopy characteristics in semiarid
areas because the scale of variability of the principle landscape
elements in semiarid areas is larger than the pixel size in most
of the remote sensing satellite imageries (Adams et al., 1995;
Dawelbait and Morari, 2008; Okin and Robert, 2004).

Sudan is a developing country where desertification is wide-
spread. UNEP considers that three compounding desertification
processes are underway (UNEP, 2007): climate-based conversion of
land types from semi-desert to desert, mainly due to a reduction in
annual rainfall; degradation of existing desert environments,
including wadis and oases, principally caused by deforestation,
overgrazing and erosion; conversion of land types from semi-
desert to desert by human action (deforestation, overgrazing
and cultivation) even if rainfall may still be sufficient to support semi-
desert vegetation. These processes are relatively difficult to distin-
guish, separate and quantify on the ground (Diouf and Lambin, 2001).

Specific studies are therefore necessary in order to define the
driving variables affecting the processes and adopt efficient site-
specific strategies to combat desertification. Since limited funds
are provided to Sudanese research institutions, remote sensing can
be a reliable tool to study desertification without incurring high
costs (e.g. Ali and Bayoumi, 2004; Dafalla and Casplovics, 2005;
Khiry, 2007).

This paper aimed to a) test the application of SMA to
Landsat images as a tool to study the desertification phenomenon
and b) individuate and quantify the driving variables influencing
land degradation in a savannah region in the central part of
Sudan.

2. Material and methods
2.1. Study site

The study site is located in the north of Umrowaba in North
Kordodan State, central Sudan, in the Sahelian eco-climatic zone
(between latitude 12°56’35” and 13°3’49”N and longitude 31°0'51”
and 31°58'51” E) (Fig. 1). The climate is semiarid with annual
rainfall ranging from 200 to 750 mm, concentrated during a few
summer months (June to September/October), with a peak in
August. Mean annual temperature is about 20 °C, but the daytime
temperature can rise as high as 45 °C during summer.

The soil is a Cambric Arenosols (FAO-UNESCO, 1997), coarse
sandy, of Aeolian origin with high infiltration rates and inherent
low fertility. Sand sheets and sand dunes stabilized by vegetation
are the main natural formations. Natural vegetation consists of
trees (Acacia spp.), bushes and grass, Aristida pallida Steud. on crests
of dunes, Eragrostis termula Tnismert. in the troughs and Cenchrus
biflorus Roxb., which grows after crop cultivation. Rangeland and
rain-fed croplands are the most important land use systems.
The main crops are sorghum (Sorghum vulgare Pers.), millet
(Panicum miliaceum L.), sesame (Sesamum indicum L.) and water-
melon (Citrullus lanatus (Thunb.) Matsum & Nakai). The rainy
season usually leads to a short growing period (from June to
October) followed by a long dry season with a reduction in green
vegetation. The peak of biomass is observed at the end of the rainy
season (September—October).

2.2. Data acquisition and preprocessing

Landsat Thematic Mapper (TM5) and Landsat Enhanced
Thematic Mapper plus (ETM+7) scenes acquired on September
15th 1987 (TM5 Sep 15) and October 18th 2008 (ETM+7 Oct 18)
were analyzed. The dates coincided with the end of the rainy
season and were selected for monitoring the potential long-term
processes of desertification, since both of them were acquired in
periods of comparable rainfall amount (5 mm in September 1987
and 8 mm in October 2008) even considering the antecedent
months (e.g. 113 in August 1987 and 92 mm in August 2008).

Landsat images were selected because they are free of charge,
with high monitoring frequency and cover areas appropriate for
monitoring the environment in a large geographic zone. Landsat
TM5 and ETM+7 have a temporal revisit time of 16 days and
a spatial resolution of 30 m with six visible/near infrared bands and
one thermal band. The gaps in ETM+7 scan-line corrector (SLC)—off
were filled using the localized linear histogram mach (LLHM)
method (Scaramuzza et al.,, 2004). Landsat 7 ETM + SLC — off,
November 3rd 2008 was used to fill the gaps since the time lag
between the two images was only 15 days and the gaps were not
overlapping.

ETM+7 Oct 18 was co-registered to TM5 Sep 15 to undertake
comparative analysis. Images were not referenced to a standard
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Fig. 1. Study site position and main landscape elements.

map base, since the only available map had a coarser resolution
(scale 1:250,000). They were geometrically rectified using 13
ground control points to accurately mach them to ground reference
data. The nearest neighbour assignment (Lillesand et al., 2004) was
applied yielding a root mean square (RMS) error of 0.34 pixels.
Subsets covering only the study area were then extracted from each
image. To apply SMA the digital number (DN) of the images band1-
5 and 7 recorded in 8 bits were converted to exo-atmospheric
reflectance units according to Markham and Barker, (1986). The
conversion also improved the image quality (De Asis and Omasa,
2007). No atmospheric correction techniques, such as empirical
line calibration (Moran et al., 2001) or dark object subtraction
(Chavez, 1988) were applied since they have no significant effect on
the modelling (Wu, 2004).

2.3. Spectral mixture analysis

In remote sensing images of arid and semiarid environments,
the pixel contains mixed spectral information due to the high
variability in the distribution of land cover components. SMA is
based on the concept that the variance across a given scene is
dominated by the relative proportion of a few spectrally distinct
components (Elmore et al., 2000). SMA transforms radiation or
reflectance data into fractions of a few dominant endmembers,
which are fundamental physical components of the scene and
not themselves a mixture of other components (Elmore et al.,
2000). Fraction images represent the mixing proportions of
these endmember spectra (Adams et al., 1986; Smith et al., 1985).
SMA generally involves three steps (Huete, 2004): a) assessment
of dimensionality or number of unique reflecting materials in
a landscape to obtain the endmembers; b) identification of the
physical nature of each endmember within a pixel; c) determi-
nation of the amounts of each endmember in each pixel.

The basic linear spectral mixture analysis (LSMA) equation is
(Okin and Robert, 2004):

Rp(4) = > fiRi(A) + (%) (1]

i=1

Where Ry(A) is the apparent surface reflectance of a pixel in an
image, f; is the weighting coefficient (3°f_ f; = 1) interpreted as
fraction of the pixel made up of the endmember i = 1,2 ...n, R;(4) is
the reflectance spectrum of spectral endmember in an n-end-
member model and (1) is the difference between the actual and
modelled reflectance. f; represents the best fit coefficient that
minimizes RMS error given by the following equation:

0.5

m 2
RMS — % 2]

where ¢; is the error term for each of the m spectral bands considered.

One problem related to the application of SMA is nonlinear mixing,
which can hinder the SMA applications (Ray and Murray, 1996; Roberts
etal., 1993). Nonlinear mixing occurs when photons interact with more
than one type of object on the earth before returning to the sensor
(Asner, 2004). However, the importance of the effect is not widely
recognised since other studies (Qin and Gerstl, 2000; Villeneuve et al.,
1998) showed that nonlinear mixing is a secondary feature.

2.4. Endmembers

Some SMA approaches use endmember spectra derived from the
image (image endmember) (e.g. ElImore et al., 2000; Wessman et al.,
1997), whereas others employ libraries of endmember spectra
(library endmember), which are produced from reflectance
measurement in a laboratory (e.g. Smith et al., 1990). Tompkins et al.
(1997) pointed out that endmembers selection is the most critical
step in SMA to provide a physically meaningful fraction. While
library endmembers would undoubtedly represent a purer
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Fig. 2. Scatter plot of the first three PCs and location of the five endmembers (a,b,c); endmember spectra (d).

endmember spectrum and would possibly have given a more
accurate absolute abundance, image endmembers simply produce
adifferent scaling and can thus be used for change detection (Elmore
et al,, 2000). Bateson and Curtiss (1996) and Bateson et al. (2000)
generated SMA models using PCA to explore image data in
multiple dimensions, although in drylands it is exceedingly difficult
to locate image pixels containing 100% cover of each appropriate
endmember. One advantage of this technique is that the selection of
the endmember spectra is based on inherent spectral variability of
the image data without requiring homogeneous pixels of each
endmember (Asner, 2004). The approach of Johnson et al. (1985) and
Smith et al. (1985) was used to select the endmembers in this paper.
The method is based on PCA application to identify the individual
endmembers of multiple surface components. The authors observed
that for a mixture of three substances (e.g. minerals) the scatter plot
of the first two principle components produced a triangle in which
the ‘pure’ endmembers were located at the corners. Several studies
have adapted this technique by analyzing different principal
component pairs and have managed to successfully obtain image
endmembers within different environments (Brandt and Townsend,
2006; Drake and White, 1991; Small, 2001, 2004; Theseira et al.,
2003). The use of limited spectral resolution of broadband multi-
spectral sensors such us Landsat ETM+, however, does not permit to
distinguish materials with similar but distinct surface reflectance
(Small, 2004). In this sense each spectral endmember may represent
an aggregate of land cover types (Small, 2004).

In this study a PCA was applied to Landsat images using ENVI to
identify endmembers. The spectral mixing space as represented as
orthogonal scatterplots of the first three PC bands were generated
and the vertices of these plots were selected as endmembers after
visualization in the original images. Endmember spectra were
applied to SMA in order to produce the fraction images with
associated the RMSE images. All image processing was performed
within the ENVI remote sensing image analysis environment (ITT
Visual Information Solutions).

2.5. Change detection

Long-term variation in land use and land cover (LULC) was ob-
tained by calculating the difference in fraction images applying
map-algebra and Change Vector Analysis (CVA) (Kuzera et al., 2005;
Malila, 1980). CVA allows the direction and magnitude of change
between two time periods to be evaluated. The bright vegetation
(BV) and bright soil (BS) fraction images were used to monitor the
vegetation re-growing and desertification between 1987 and 2008.
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Fig. 3. Scatter plot correlation between measured and SMA estimated vegetation
fraction in 2008.
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The magnitude of vector change (R) was calculated as follow: Change direction was measured as the angle («) of the change
vector from a pixel measurement in 1987 to the corresponding

R — \/(BS1 _ B52)2+(BV] _ BV2)2 (3] pixel in 2008 according to:
where the subscript 1 and 2 indicate the fraction covers in 1987 and _ (BS1 —BSy)
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Fig. 4. BV, BS and NPM fraction images and change detection in long-term monitoring: (a) BV in 1987, (b) BV in 2008, (c) difference in BV, d) BS in 1987, (e) BS in 2008 (f) difference
in BS, (g) NPM in 1987, (h) NPM in 2008 and (i) difference in NPM. Circles in (a), (b) and (c) indicate the three main areas affected by desertification; circles in (g), (h), (i) indicate the

rural villages and their expansion over 21 years.
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Fig. 5. Desertification and re-growth areas calculated by applying change vector analysis.

Angles measured between 90° and 180° indicated an increase in
BS and decrease in BV, and therefore an increase in desertified area.
On the contrary, angles measured between 270° and 360° indicated
a decrease in sand and an increase in vegetation and therefore rep-
resented re-growth conditions. Angles measured between 0°—90° and
180°—270° indicated either increase or decrease in both BV and BS,
and consequently persistence in the conditions (Khiry, 2007). Change
of magnitude is measured as the Euclidean distance or length of the
change vector from a pixel measurement in 1987 to the corresponding
pixel in 2008. Four classes of magnitude were represented for
either desertification or re-growing according to Kuzera et al. (2005).

2.6. Field survey

A 2-weeks field survey was conducted in October 2008 in order
to test the accuracy of SMA using ground vegetation data as refer-
ences. A total of 16 mixed ground cover plots (size 60 x 60 m for
each plot) were selected. Vegetation was composed of a mixture of
acacia trees, bushes, grass and shrubs. Trees and bushes were
georeferenced with a GPS and the crown diameters were measured
and orthogonally projected to the ground surface to estimate the
percentage cover. The percentage cover of grass and shrubs was
estimated using the line point intersect sampling method (Elmore
et al., 2000). The method consists of horizontal, linear, measure-
ments of plant intercepts along the course of a line. The percent
cover of each plant species is obtained by totalling the intercept
measurements for all individuals of that species along the transect
line and converting this total to a percent. Measurements of the
grass and shrubs were taken along 30 60-m long transects, oriented
in N—S direction, every 2 m. Measurement points were selected at
60 cm intervals along the transect.

The accuracy of SMA was estimated by scatter plot correlation
comparing total percentage of live cover in each plot with the live
cover (vegetation) fraction image.

3. Results and discussion
3.1. Endmember spectra and SMA applications

The PC analysis of TM5 Sep 15 data found that the first three
components explained over 99% of the variance and that

simulated data were mean-corrected and projected onto the
space determined by those components. In this PC-reduced space
five endmembers were manually selected (Fig. 2): bright vege-
tation (BV), dark vegetation (DV), bright soil (BS), dark soil (DS)
and non-photosynthetic material (NPM). BV consisted of all types
of natural vegetation (e.g. dense shrubs, grass) and cultivated
crops with higher leaf chlorophyll and water content. DV con-
sisted of natural vegetation with lower leaf chlorophyll/water
content (senescing vegetation). NPM identified villages (e.g.
straw houses), dormant trees and senesced grass and shrubs. BS
and DS represented coarse sandy soils and fine sandy soils with
higher organic matter in the top layer, respectively. A higher soil
organic matter content usually also implies a higher soil water
holding capacity and subsequently higher water content. The
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Fig. 6. Classification of study site according to the desertification and re-growth
magnitude classes.
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effect of shadow was ignored since it is reduced for the sparse
canopies typical of many semiarid bush species (Trodd and
Dougill, 1998). Endemembers were identified according to the
criterion of the minimally inclusive feature space selection
(Small, 2001). The minimally inclusive endmembers were
averages of smaller numbers (c.a. 90) of reflectance profiles cor-
responding to the pixels nearest to the apexes of the scattergram.
Once the image endmembers were determined their relationship
to physically meaningful target have been established. Anyway,
not all image components can be effectively modelled using
simple endmember models (Brandt and Townsend, 2006). The
endmember set was selected to maximize the model perfor-
mance for BV, and BS which is more vulnerable to wind erosion
than DS. To find the best quality of fraction images, three
combinations of endmembers were tested (Lu and Weng, 2004).
The combinations were: 1) all five endmembers; 2) four end-
members with BV, NPM, BS and DS; 3) three endmembers with
BV, NPM, and BS. Fraction images derived from different combi-
nations of endmembers were evaluated with visual interpreta-
tion, error extent and distribution in the error fraction image. The
combination with four endmembers (BV, NPM, BS and DS) was
chosen since it provided the best distinction of LULC types and
lowest errors.

The set of endmember spectra selected on TM5 Sep 15 was
therefore used also on ETM+7 Oct 18. Using the identical end-
members to analyze multitemporal images strengthened the
change analysis (Elmore et al., 2000). Similar to using reference
endmembers from a spectral library, using identical image end-
members for different images allows a direct comparison of
resulting endmember proportions (Brandt and Townsend, 2006).
The RMS error images for SMA process ranged from 0% to 3% for
TM5 Sep 15 and from 0% to 2.8% for ETM+7 Oct 18.

Fig. 3 shows the scatter plot correlation between the
percentage of vegetation determined with SMA (ETM+7 Oct 18)
and field data. In general, the correlation between them is good
with an R? of 0.91 but with a slight overestimation, especially at
lower SMA values. Similar results were obtained by Small (2001)
estimating the vegetation abundance of an urban environment
using Landsat TM data. A three-component (high albedo, low
albedo and vegetation) linear mixing model provided consistent
estimates of vegetation fraction but only for values higher than
0.2. There are three main sources of error that could have
affected the comparison. The first one can be due to the
misregistration of multidate scene and location of the field sites.
This is potentially the largest source of error (Elmore et al.,
2000), especially in our case where the geometric rectification

Fig. 7. Detailed views of the degraded eastern part of the site: (a) BV in 1987, (b) BV in 2008, (c) difference in BV, (d) NPM in 1987, (e) NPM in 2008 and (f) difference in NPM.
The expansion of the village is clearly shown by two large clusters of pixels with value 1 in (f).
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was done with 13 ground control points for all the scenes before
subsetting of the study area. This was done because the study
area had no fixed sharp points that could be used as control
points. Moreover, most of the sites were characterized by
a higher degree of scene heterogeneity that could have increased
the uncertainty in location (Elmore et al., 2000). Other sources of
error can be related to the application LLHM method error to fill
the gaps in ETM+7 Oct 18 (Scaramuzza et al., 2004) and accuracy
of the field survey, especially in the estimation of grass and
bushes. Considering the comparative approach of the present
work, the overestimation errors were considered acceptable to
evaluate the LULC change.

3.2. Change detection

SMA was performed to determine the relative proportions of BV,
BS, DS and NPV for each satellite image (Fig. 4). High abundance of
each endmember is indicated in the figures by brighter pixels
whereas low abundance is indicated by darker pixels.

Images analysis clearly indicates the existence of heteroge-
neous and contrasting conditions within the study site. Relevant
negative variations in BV fraction (<—0.1) were observed mainly
in three large areas, located near rural villages. In the first two,
one in the north and the other in the south, the average change

in BV was —0.1 and —0.16 respectively. The eastern part spreads
over a larger surface area, with an average change in BV fraction
of —0.2.

According to CVA (Fig. 5), the magnitude of desertification
ranges from low to extreme, with a prevalence of severe degra-
dation conditions (high or extreme) in the eastern part. Change
detection analysis also shows the existence of re-growth condi-
tions, mostly spread in the south-western part. Overall, deserti-
fication prevailed over re-growth, (Fig. 6) affecting an area of
153,867 km?, with a prevalence of medium (70,944 km?) and high
(48,578 km?) classes of magnitude. Re-growth was estimated on
an area of 35,313 km?, mainly classified as medium (17,005 km?)
and low (13,708 km?). However, average estimation is not suffi-
cient to provide a clear representation of driving factors of
change at landscape scale (Anyamba and Tucker, 2005; Collado
et al., 2002).

The degradation was driven by various factors, which operated
with different intensity in the areas. In the eastern part the
expansion of villages triggered the change in land use and
mismanagement of the natural resource, mainly caused by
deforestation to supply wood for domestic uses i.e. building,
cooking, etc., and overgrazing (Sherbinin, 2002). More details of
the dynamism around villages are given in Fig. 7. The NPV frac-
tion change image shows two large patches of pixels with value 1

Fig. 8. Detailed views of the degraded northern part of the site: (a) BV in 1987, (b) BV in 2008, (c) difference in BV, (d) BS in 1987, (e) BS in 2008 and (f) difference in BS.
Figures clearly illustrate the effect of sand movement according to the prevailing wind directions (arrows).
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(new straw houses) due to the expansion of the village over 21
years.

Two other processes affecting soil degradation were recognized
by SMA. The first one is related to sand exposure. In the northern
area a sand dune (locally called Gouz) is visible in the BS fraction
image of 1987, along the SE borders of the village of Tafantara
(Fig. 8). At that time, the dune was stabilized by natural vegetation
but deforestation for domestic purposes and overgrazing caused
the degradation of the site. The change in BV fraction clearly
demonstrates the magnitude of the process (Fig. 8). The degrada-
tion led to the exposure of the sand dune in an E-SE-S direction
according to the prevailing wind direction in winter and early
summer (Fig. 8).

The conversion of rangeland into cultivated croplands is the
third phenomenon that could have affected the desertification of
the study site. In the southern part (Fig. 9), the BV fraction in 1987,
on average 0.46, was represented mainly by rangeland. At the
same time the average BS fraction was 0.1. The change in land use
to cultivation led to a decrease in BV, especially in the central part
and a contemporary massive increase in BS fraction. It is not sure
that in all zones changes in land use lead necessarily to deserti-
fication, since an increase in BS fractions could also be associated
to post-harvest field surface conditions. However in general the
conversion of dry and fragile rangelands into traditional and

mechanized cropland has already been indicated by many Authors
as one of the main processes affecting desertification in Sudan e.g
(Ayoub, 1998; UNEP, 2007). Over-exploitation of semi-desert
environments through deforestation, overgrazing and cultivation
results in habitat conversion to desert, even though rainfall may
still be sufficient to support semi-desert vegetation (Nicholson,
2005).

Re-growth conditions observed in the SW part were mainly due
to Government reforestation projects in last decade and sustained
by higher rainfall in the last years in the study area. The Rainfall
Anomaly Index (RAI) (Tilahun, 2006) time series (Fig. 10) confirmed
the existence of favourable conditions for vegetation growth from
the 1990s to 2008, with higher frequency of positive anomalies
than in the 1970s and 1980s.

This result is in accordance with the recent satellite and model
based studies of the Sahel (e.g. Anyamba and Tucker, 2005; Eklundh
and Olsson, 2003), which demonstrated that vegetation has recov-
ered from the peak drought conditions suffered in the region in the
1980s. For example, Anyamba and Tucker (2005), monitoring the
Sahelian vegetation dynamics using NDVI in the period 1981—-2003,
observed the prevalence of greener than normal conditions from the
1990s to 2003. Indeed, NVDI time series followed a similar increase
in rainfall over the region during the last decade and indicates
a gradual slow but persistent recovery from the 1980s.

0.8 1.0 -1.0 -0.5 0 0.5 1.0

Fig. 9. Detailed views of the degraded southern part of the site: (a) BV in 1987, (b) BV in 2008, (c) difference in BV, (d) BS in 1987, (e) BS in 2008 and (f) difference in BS.
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Fig. 10. Rainfall Anomaly Index (RAI) from 1973 to 2008.

4. Conclusions

Site-specific interactions between natural processes and human
activity play a pivotal role on desertification in North Kordodan
State. Even if phenomena at large scale (e.g. positive rainfall trend)
in the last years have allowed a gradual recovery from the peak
drought conditions suffered in the Sahel during the 1980s, there are
still forcing variables that act at local scale to cause land degrada-
tion. One of the most important factors affecting such degradation
is human activities, which exploit the natural resources beyond
their ecological resilience threshold until desertification is irre-
versible (Hellden, 2008). Hunger and local energy needs seem to be
the driver of land use and management.

Site-specific strategies that take into account the interactions
of the driving factors at local scale are thus necessary to
combat desertification, avoiding the implementation of untargeted
measures. In order to identify the soundest strategies, high-
resolution tools must be applied. In this study, the application of
spectral mixture analysis to Landsat data appeared to be a consis-
tent, accurate and low-cost technique to obtain information on
vegetation cover, soil surface type, and identify risk areas.
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