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Abstract

We study the use of airborne and simulated satellite remote sensing data for classification of three water quality variables: Secchi depth,

turbidity, and chlorophyll a. An extensive airborne spectrometer and ground truth data set obtained in four lake water quality measurement

campaigns in southern Finland during 1996–1998 was used in the analysis. The class limits for the water quality variables were obtained

from two operational classification standards. When remote sensing data is used, a combination of them proved to be the most suitable. The

feasibility of the system for operational use was tested by training and testing the retrieval algorithms with separate data sets. In this case, the

classification accuracy is 90% for three Secchi depth classes, 79% for five turbidity classes, and 78% for five chlorophyll a classes. When

Airborne Imaging Spectrometer for Applications (AISA) data was spectrally averaged corresponding to Envisat Medium Resolution Imaging

Spectrometer (MERIS) channels, the classification accuracy was about the same as in the case of the original AISA channels. D 2002

Elsevier Science Inc. All rights reserved.
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1. Introduction

Classification systems condense large amounts of infor-

mation measured on the water bodies into easily under-

standable information for e.g. decision makers, authorities,

and general public. Finding suitable variables and classi-

fication limits for a classification system is complicated.

The variables and classification limits usually depend on

the geographic location, the intended use of the water,

data that is available, and which organization is doing the

classification. Classification can be based on physico-

chemical (e.g., chlorophyll a, total phosphorous (TP),

Secchi depth) and biological (e.g. species composition

of phytoplankton, periphytic growth, macrophytes, fish

fauna) variables. An extensive review of different classi-

fication systems is presented by Premazzi and Chiaudani

(1992). Biological variables often describe the status of

waters better than physico-chemical variables. However,

since the measurement of biological variables is expensive

and time consuming, the operational classification of

lakes in countries with a high number of lakes, such as

Finland, is usually based on physico-chemical measure-

ments. In total, there are 56012 lakes with a surface area

larger than 0.01 km2 in Finland.

The general quality of lakes, rivers, and coastal areas

in Finland is periodically assessed by the Finnish Envi-

ronment Administration. This classification is based on

laboratory analysis of water samples collected from sta-

tions at selected locations. Currently, the classification is

carried out nationwide every 4 years. The latest lake

classification (samples collected during 1994–1997)

included data from 5000 sampling stations on lakes that

represent 79% of the total lake surface area of Finland

(including all lakes larger than 1 km2). However, even

though the collected data set is representative, its usability

is limited especially by the spatial variation of water

quality in lakes.

By using remote sensing techniques, some of the

important variables used in the operational classification
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of lakes can be measured. These optically active variables

include chlorophyll a, total suspended solids, turbidity,

and Secchi depth (see e.g. Dekker, 1993; Gitelson et al.,

1993; Kallio et al., 2001). Aquatic humus is also an

optically active substance sometimes used in lake classi-

fication, but its estimation by remote sensing techniques in

lakes has been proven difficult (e.g., Dekker, 1993; Kallio

et al., 2001).

Remote sensing offers some advantages such as good

spatial and temporal coverage and the possibility of meas-

uring many lakes simultaneously. With remote sensing,

some variables of lake water quality could potentially be

assessed up to several times per year. This would offer

valuable data on the seasonal variability of water quality.

Remote sensing instruments can also reduce water sampling

and lakes not monitored by traditional methods can be

included in the assessment.

In order to study the usability of remote sensing for

water quality measurements of Finnish lakes, the Labora-

tory of Space Technology of the Helsinki University of

Technology, together with the Finnish Environment Insti-

tute, conducted four airborne remote sensing and ground

truth measurement campaigns in Southern Finland during

1996–1998. The campaigns were part of the EU-funded

SALMON project (Lindell, Pierson, Premazzi, & Zilioli,

1999) and national remote sensing projects. The main

results of these projects are presented in Härmä et al.

(2001), Kallio et al. (2001), Koponen et al. (2001), and

Pulliainen et al. (2001).

This paper investigates the feasibility of remote sensing

data for operational lake water classification by using

regression algorithms. While numerous papers describe

remote sensing methods used for water quality estimation,

the classification of lake water quality has not been

previously investigated using as many variables and as

large data set as available here. In addition, the feasibility

of the Medium Resolution Imaging Spectrometer (MERIS)

instrument onboard the Envisat satellite for water quality

classification is studied by reconstructing the MERIS

channels from airborne spectrometer data.

2. Instruments and data

The number of lakes measured during the four cam-

paigns was 11 (all were located in southern Finland). The

number of measurement days was 8. The lakes selected for

the measurement campaigns had varying water quality

characteristics. The trophic status varied from oligotrophic

to eutrophic and two of the lakes were humic. For detailed

information on the lakes, see Kallio et al. (2001).

The main remote sensing instrument employed during

the campaigns was the Airborne Imaging Spectrometer for

Applications (AISA) (Mäkisara et al., 1993). The main

measurement characteristics of AISA are presented in

Table 1.

The total number of channels that AISA has is 286.

However, the instrument is not able to store data from all

channels when the measurement mode suitable for air-

borne remote sensing is used (the amount of data gen-

erated exceeds the capabilities of the data recorder).

Instead, data from a smaller number of preselected chan-

nels are stored. In the campaigns of 1996–1998, the

selected channels covered most of the total wavelength

range (450–900 nm) although there were some gaps.

Additionally, the channel configuration varied slightly

from campaign to campaign. For example, the number

of stored channels was 40 in campaigns conducted in

August 1996 and May 1997 and 53 in August 1997 and

August 1998.

After acquisition, the AISA images were radiometrically

and geometrically corrected and resampled to a pixel size

of 2� 2 m by the Finnish Forest Research Institute.

Additional data preprocessing consisted of deriving the

average radiance of each AISA channel in a 100� 100-m

square around each ground truth sampling point. If the

ground truth point was not at the center of the measure-

ment swath or it was close to shore or in a cloudy area, the

square was moved to the closest suitable location at the

center of the swath. Averaging reduces the variability of

the signal due to the stripes caused by the CCD cell and

the sun glitter caused by rough water surface. In order to

reduce the effect of using various wavelength configura-

tions of AISA, data from different campaigns were

resampled into the same wavelength configuration by

using the nearest-neighbor method (i.e., the value of a

channel that did not have a value was obtained by copying

the value of the channel closest to it).

The ground truth measurements included water sampling

for laboratory analysis (e.g. chlorophyll a, turbidity, total

suspended solids, aquatic humus), on-site measurements

(e.g. Secchi depth, upwelling and downwelling irradiance

with an underwater spectrometer), and weather observations

(e.g. wind speed and direction, cloudiness). The sum of

chlorophyll a and phaeophytin a (denoted here with chl-a)

was determined with spectrophotometer after extraction

with hot ethanol (ISO 10260) and turbidity by nephelomet-

ric method (based on the measurement of light, 860 nm)

scattered within a 90� angle from the beam directed at the

water sample (ISO 7027). In TP determination, the water

sample was digested by potassium peroxodisulphate before

analysis with ammonium molybdate (Murphy & Riley,

Table 1

Measurement characteristics of AISA airborne spectrometer

Type Pushbroom CCD-matrix sensor

Number of channels 286

Channel wavelength range 450–900 nm

Channel bandwidth 1.6–9.4 nm

(sum of one to six channels)

Number of pixels (across track) 384

Field of view 21�
Pixel size from 1000-m altitude 1 m
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1962). The total number of points with near-simultaneous

AISA and ground truth data was 127. Due to partial cloud

cover and other problems, the number of usable data points

is 122.

3. Methods

3.1. Classification

In this analysis, two different water quality classification

systems were considered: the Water Quality Classification

of Inland Waters in Finland (Heinonen & Herve, 1987;

Vuoristo, 1998) and the OECD Lake Classification Scheme

(OECD, 1982; Premazzi & Chiaudani, 1992). A comparison

of the variables and class limits that are relevant to this

study is presented in Table 2.

The Finnish water quality classification system is based

on the variables and limits suitable for various water

utilization purposes encountered in Finland i.e. recreational,

raw water supply, and fishing. The quality class require-

ments for these three purposes can differ regarding both

variables used and their class limit values. Therefore, the

Finnish water quality classification also includes a general

classification system, from which we took the classification

limits for Secchi depth and turbidity. The general classi-

fication uses about 20 variables and the final class of a lake

or a part of a lake is decided by the person doing the

classification analysis. The most important variable in the

Finnish general classification system is chl-a because it

usually correlates best with the overall condition of a lake.

Oxygen deficiency in the hypolimnion and the occurrence

of toxic substances are other important variables. Aquatic

humus, measured by water colour, is of special interest for

water quality monitoring in Finland, since the number of

humic lakes is high. For example, if the water colour (ISO

7887) is more than 50 mg Pt l � 1 (equals about

aCDOM(400) = 6 m � 1, CDOM= colored dissolved organic

matter), the water quality class changes automatically from

excellent to good in classification.

The OECD classification system is based on the limno-

logical trophic state of lakes i.e. ultraoligotrophic, oligotro-

phic, mesotrophic, eutrophic, and hypertrophic. It uses three

variables: chl-a, Secchi depth, and TP.

Finnish lakes are not as transparent as the lakes the

OECD system was developed for. For example, about

90% of the samples in our campaigns have Secchi depth

less than 3 m, which is the limit for a eutrophic lake

according to the OECD system so, clearly, the limit of 3 m

is not appropriate for classification of eutrophic lakes in the

case of Finland. Therefore, for this analysis, the classifica-

tion limits for Secchi depth were taken directly from the

Finnish system.

Only the FEI system has limits for turbidity, and it has

only two classes (limit is at 1.5 FNU). Fortunately, the

correlation between TP and turbidity is reasonably high

(R2 = 79.1%, n = 86, according to our data); hence, addi-

tional turbidity classes agreeing with the Finnish system can

be derived from the limits defined for TP. Positive correla-

tion between turbidity and TP has also been found in large

Table 3

Final classification limits used in the present investigation

Class 1 Class 2 Class 3 Class 4 Class 5

Secchi depth (m) >2.5 1–2.5 < 1

Turbidity (FNU) [corresponding total phosphorous

value in mg/l]
< 1.4 [ < 12] 1.4–4.4 [12–30] 4.4–8.3 [30–50] 8.3–19.6 [50–100] >19.6 [>100]

Chl-a (mg/l) < 2.5 2.5–8 8–25 25–75 >75

Table 2

Comparison between the variables and class limits of the general classification system developed for lakes in Finland and the OECD lake water

classification scheme

Class

Variable

Ultraoligotrophic

(excellent)

Oligotrophic

(good)

Mesotrophic

(satisfactory)

Eutrophic

(poor)

Hypertrophic

(bad)

Secchi depth (m), Finnish > 2.5 1–2.5 < 1

Secchi depth (m), OECD >12 >6 6–3 3–1.5 < 1.5

Turbidity (FNU), Finnish < 1.5 >1.5

Turbidity (FNU), OECD N/A N/A N/A N/A N/A

Total phosphorous (mg/l), Finnish < 12 < 30 < 50 50–100 >100

Total phosphorous (mg/l), OECD < 4 < 10 10–35 35–100 >100

Mean chl-a in the growing season (mg/l), Finnish < 4 < 10 < 20 20–50 >50

Max. chl (mg/l), OECD < 2.5 < 8 8–25 25–75 >75

N/A= not applicable.
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water quality data sets of Finnish lakes (e.g. Mannio, Räike,

& Vuorenmaa, 2000). Our data yields the following relation

(Eq. (1)):

Turbidity ¼ 0:0642� TP1:2423; ð1Þ

where TP is expressed in mg/m3.

The turbidity limits derived with the TP limits of the

OECD system are not as well suited for the turbid Finnish

waters as the national limits since the OECD values are

too low.

The concentration of chl-a is used in both systems.

However, the Finnish system uses the mean chl-a concen-

tration of the growing season, while the OECD system is

based on the maximum concentration. Because our data set

was from August when the chl-a concentrations are usually

at the maximum in Finland we applied the OECD classi-

fication for chl-a. The final class limits used in our analysis

are presented in Table 3.

The observed relationship between Secchi depth and

turbidity is presented in Fig. 1 and between Secchi depth

and chl-a in Fig. 2. The correlation coefficients and the

coefficients of determination (R2) between water quality

variables and their natural logarithms are presented in

Table 4. Some of the variables, especially Secchi depth

and turbidity are highly correlated with each other.

3.2. Retrieval algorithms

The retrieval of water quality variables with remote

sensing instruments is based on analyzing the spectral

features of solar radiation reflected from the water body.

The substances found in natural waters (phytoplankton,

suspended inorganic material and dissolved organic matter)

scatter and absorb the incoming solar radiation. These

processes, defined as the Inherent Optical Properties (IOP)

by Preisendorfer (1976), are wavelength dependent and,

therefore, influence the shape and the magnitude of the

spectra reflected from water. This can be seen in Fig. 3

where the spectra measured (by AISA) at five ground truth

data points are presented. The values of water quality

variables at these points are presented in Table 5. By

comparing the spectra data with the water quality variables,

the following features can be observed.� The peak at about 700 nm grows as the concentration

of chl-a grows. This has been linked to scattering and

absorption by phytoplankton (Morel & Prieur, 1977), and

to chl-a fluorescence, which has a maximum at 683 nm

(Smith & Baker, 1978). The shift to longer wavelengths as

the concentration of chl-a grows was observed by Gitelson

(1992). Just before, the peak phytoplankton has an absorp-

tion region at about 660–670 nm although it is not as clear

as the peak at 700 nm in Fig. 3.� Due to scattering from suspended matter, the detected

radiance increases with the turbidity value in all parts of the

spectrum in Fig. 3. Since absorption by optically active

substances also influences the radiance level, it must be

accounted for. One way to do this is to use wavelengths

where the absorption by optically active substances (e.g.

chl-a andCDOM) isminimal. One such region is near 710 nm

(Dekker, 1993). Our data shows that at that wavelength the

turbidity values in Table 5 follow the radiance values well by

decreasing systematically with decreasing radiance.

The use of channel ratios for a relationship between

remote sensing measurements and ground truth data is very

common. The advantage of using ratios over absolute values

of radiance (or reflectance) is that they correct some of the

effects of measurement geometry and atmosphere. For

example, Dekker, Malthus, and Seyhan (1991) showed that

Table 4

The correlation between water quality variables (99 data points)

Variables Correlation coefficient R2 (%)

Secchi depth and chl-a � .62 38.6

Ln(Secchi) and Ln(chl-a) � .91 82.4

Secchi depth and turbidity � .67 44.4

Ln(Secchi) and Ln(turbidity) � .94 88.7

Turbidity and chl-a .79 62.0

Ln(turbidity) and Ln(chl-a) .88 76.9

Ln = natural logarithm.

Fig. 2. The relationship between Secchi depth and chl-a.

Fig. 1. The relationship between Secchi depth and turbidity.
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channel ratios yield high correlation coefficients for several

water quality parameters. Dekker (1993) and Gitelson et al.

(1993) concluded that for the retrieval of chl-a concentration

a ratio of channels centered at about 675 and 705 nm is

useful in several lake types (oligotrophic to hypertrophic).

In addition, the previous studies on partly the same data set

as used here (by Kallio et al., 2001; Koponen et al., 2001;

Pulliainen et al., 2001) have showed that simple channel

ratio and channel difference algorithms give high coeffi-

cients of determination for the water quality variables

included here.

In our analysis, the best retrieval algorithm for each

variable was found empirically by deriving a regression

model for all possible channels and channel ratio and

channel difference combinations and selecting the one with

the highest R2. The resulting algorithms and their parame-

ters are presented in Table 6.

Secchi depth is a measure of water clarity by human eyes

and all optically active substances in water affect it (Secchi

depth decreases as the concentration of chl-a, CDOM, and

other substances increases). As eyes use the whole visible

band and the combined effect of all optically active sub-

stances over this region is complex, it may be difficult to

find conclusive reasons for using some particular wave-

lengths for its retrieval. In our case, the empirical analysis

yields the highest value for R2 when a channel ratio with

channels centered at 521 and 700 nm is used.

In the algorithms for Secchi depth and chl-a the radiance

of a near-infrared (NIR) channel at 781 nm is subtracted

from radiance of channels at 521, 662 and 700 nm. This

can be considered to be a type of coarse atmospheric

correction as the reflectance of water is very low at NIR

wavelength and most of the detected radiation is caused by

atmospheric effects. However, with lake water this is not

always true because with high concentration of suspended

matter the NIR reflectance of water is not zero. Never-

theless, in our case, the subtraction improves the overall

retrieval accuracy.

The feasibility of regression algorithms usually depends

on the season. Therefore, the coefficients derived for May

differ from those derived for August (Kallio et al., 2001). In

Finland, the most important time of year in lake monitoring

is August, because of high chl-a concentrations, the occur-

rence of phytoplankton blooms and low oxygen concen-

trations in the hypolimnion. In addition, the Finnish lake

classification system generally uses in situ data from that

period. Therefore, the data collected on 7 May 1997 (20 data

points) was not used in the analysis.

The previous studies also showed that atmospheric cor-

rection (radiances transformed into reflectances with the

MODTRAN model) only improves R2 and root mean square

error (RMSE) significantly for turbidity (Kallio et al., 2001).

Since only one of the three variables used here benefited

from the use of atmospheric correction, it was not applied

Fig. 3. Sample spectra measured at Lake Hiidenvesi with airborne spectrometer on 11 August 1998. Y2–Y14 are ground truth data points (the values of water

quality variables at these points are presented in Table 5). The channels used in the retrieval algorithms are shown as vertical lines.

Table 5

Values of water quality variables on selected ground truth data points at

Lake Hiidenvesi on 11 August 1998

Data point Secchi depth (m) Turbidity (FNU) Chl-a (mg/l) TSS (mg/l)

Y2 0.7 16 70 13

Y3 1 15 46 8.8

Y14 0.95 11 17 7.2

Y5 1.5 7.6 18 5.0

Y8 1.8 5.9 7.5 3.0

The absorption coefficient of filtered water at 400 nm [aCDOM(400), a

measure of colored dissolved organic matter] was not analyzed at Lake

Hiidenvesi in 1998. In August 1997, aCDOM(400) ranged between 5.3 and 6.0

m� 1. The concentration of total suspended solids (TSS, determined using

GF/C glassfiber filter) is also shown although it was not used in the analysis.
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here. For airborne remote sensing, this is an advantage since

one step of the retrieval process can be eliminated.

The algorithm for chl-a does not work well for humic

lakes (see e.g. Kallio et al., 2001). Therefore, two lakes

(eight measurement points) were removed from the chl-a

analysis. Humic lakes can be detected by analyzing the

whole spectrum of the radiation reflected by lakes as shown

by Pulliainen et al. (2001).

Lake Tuusulanjärvi was measured only during one cam-

paign (August 1996). It contains a large amount of sus-

pended solids (concentration typically close to 20 mg/l) and

Secchi depth is low (less than 0.7 m). The 14 data points

from that lake did not fit well in the regression model for

chl-a and, therefore, they were not used in the training of the

algorithm but were used in the testing.

At three ground truth stations, turbidity was not ana-

lyzed. Therefore, the number of data points in the turbidity

analysis is 99.

Satellite remote sensing instruments can cover much

larger areas than airborne sensors. Perhaps the most inter-

esting satellite instrument is the MERIS that will be

launched in the near future onboard the Envisat satellite.

MERIS has several channels suitable for the estimation of

water quality variables, and it has a fairly good spatial

resolution of 300 m (Rast, Bézy, & Bruzzi, 1999). Here,

MERIS data are simulated by calculating the mean radiance

of the AISA channels that are within a single MERIS

channel. The algorithms were derived by choosing the

MERIS channels that are the closest to the AISA channels

used earlier (e.g. 521 nm becomes the channel centered at

510 nm, 700 nm becomes the channel centered at 705 nm,

and so on). As it is possible to find MERIS channels that are

very close to the AISA channels, the resulting regression

coefficients have about the same values as those derived

with AISA data.

4. Results

4.1. Secchi depth

The classification matrix for Secchi depth when all

available data are used for training and testing the algo-

rithm is shown in Table 7. The overall result is good. The

total classification accuracy is 88% and the data points that

were not classified correctly missed the right class by only

one class.

For an operational system, concurrent ground truth data

are not always available. In order to see what effects the lack

of ground truth data might have, a second analysis was

performed by training the retrieval algorithm with data from

all but one of the measurement days and using data from

that single day for testing (in this article, we call this

procedure ‘‘daily testing’’). This means that since we

already have concurrent ground truth and remote sensing

data in archive, we can use those data sets for training

purposes and ground truth data may not be needed for every

new campaign. This procedure was repeated with all meas-

Table 7

Classification matrix for Secchi depth (all data in training and testing)

RS

GT Class 1 Class 2 Class 3

Classification a

ccuracy (%)

Class 1 24 0 0 100

Class 2 1 35 5 85

Class 3 0 6 31 84

All 88

RS = remote sensing; GT= ground truth.

Fig. 4. Regression model for Secchi depth with AISA data. Vertical and

horizontal lines represent quality class limits. Number of data points = 102.

For all data, R2 = 92.6%; for daily testing (separate training and testing data

sets), R2 = 91.8%.

Table 6

Retrieval algorithms for AISA data

Secchi depth Turbidity Chl-aa

Algorithmb a0 + a1((L521� L781)/(L700� L781)) a0 + a1L714 a0 + a1((L700� L781)/(L662� L781))

R2 for all data (%) 92.6 85.4 93.7

Coefficients (all data in training) a0 =� 0.4298, a1 = 1.0926 a0 =� 0.9203, a1 = 0.0155 a0 =� 33.79, a1 = 65.66

Number of data points 102 99 80 (94 in testing)

a Data from Lake Tuusulanjärvi were not used in training.
b Lxyz is the detected radiance at a channel with a center wavelength of xyz nm.
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urement dates. The classification accuracy for this case is

90%. Surprisingly, the classification accuracy is a bit better

now, so the system seems not to be very susceptible to the

lack of ground truth data or changes in measurement

configuration or weather conditions. A scatter plot for both

cases (all data in training and testing vs. daily testing) is

shown in Fig. 4. The lack of concurrent ground truth

observations does not appear to cause considerable change

in the estimated Secchi depth values.

4.2. Turbidity

The results for turbidity are shown in Table 8 (all data in

training and testing) and in Fig. 5. The number of classes is

now five. The classification accuracy is again better with

daily testing although the difference between the two cases

(all data in training and testing vs. daily testing) is larger

when the turbidity value is high. Fortunately, this did not

reduce the classification accuracy.

The classification accuracy is worse than for Secchi

depth. This may result from the higher number of classes

used for turbidity or from the type of algorithm that was

used for turbidity estimation, or both. For other variables,

the use of channel ratios reduces the effect of instrument

calibration errors, atmospheric effects, seasonal effects,

and other factors that may affect the measured radiance.

The use of atmospheric correction improves R2 from .85

(Table 6) to .93 (Kallio et al., 2001) and may also

improve the classification accuracy. However, this was

not applied, as the objective here was to test a simple

classification system.

4.3. Chl-a

The classification results for chl-a are shown in Table 9

(all data in training and testing) and in Fig. 6. Again, the

difference between daily testing and training and testing

with all data is large only when the concentration of chl-a is

high, and it did not reduce the classification accuracy

significantly. Only one sample was misclassified by two

classes. It represents Lake Tuusulanjärvi from which the

data were not included in training the algorithm.

The ultraoligotrophic and hypertrophic classes only held

nine and two samples, respectively. If those class limits were

removed, the classification accuracy was about 86% for all

data in training and testing and 83% for daily testing.

Table 9

Classification matrix for chl-a (all data in training and testing)

RS

GT Class 1 Class 2 Class 3 Class 4 Class 5

Classification

accuracy (%)

Class 1 7 2 0 0 0 78

Class 2 1 2 4 0 0 29

Class 3 0 4 39 3 0 85

Class 4 0 1 1 27 1 90

Class 5 0 0 0 1 1 50

All 81

Fig. 6. Regression model for chl-a with AISA data. Vertical and horizontal

lines represent quality class limits. Number of data points = 94. For all data,

R2 = 93.7%; for daily testing (separate training and testing data sets),

R2 = 91.9%.

Fig. 5. Regression model for turbidity with AISA data. Vertical and

horizontal lines represent quality class limits. Number of data points = 99.

For all data, R2 = 85.4%; for daily testing (separate training and testing data

sets), R2 = 76.1%.

Table 8

Classification matrix for turbidity (all data in training and testing)

RS

GT Class 1 Class 2 Class 3 Class 4 Class 5

Classification

accuracy (%)

Class 1 11 6 0 0 0 65

Class 2 0 16 4 0 0 80

Class 3 0 0 22 7 0 76

Class 4 0 0 0 18 2 90

Class 5 0 0 0 5 8 62

All 76
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When the data points were first divided into two classes

according to the Secchi depth (limit at 0.9 m) and chl-a

values were then derived with two different sets of regres-

sion coefficients the total classification accuracy changed

from 81% to 84%. However, when both daily testing and

Secchi depth limit was used the accuracy decreased to 77%.

4.4. Results with simulated MERIS data

The results with simulated MERIS data are very similar

to those with AISA. The classification accuracies are about

the same as with original algorithms using full AISA

spectrum information. This is not a surprise since the

MERIS algorithms are almost the same as the AISA

algorithms. The only differences are wider channels with

MERIS and the exact center wavelengths used in the

algorithms. A summary of the classification results is

presented in Table 10.

5. Discussion

The airborne water quality classification system was able

to classify the target lakes with good accuracy despite

different measurement configurations and lake types. This

indicates that remote sensing is a useful tool for water

quality classification. However, airborne remote sensing is

quite expensive and its use will be limited in operational

monitoring of large areas. Fortunately, the simulated Envisat

MERIS data also gave good results.

For satellite instruments, atmospheric correction is more

important than for airborne instrument since the radiance

originating from below the water surface is very weak

compared to the radiance from the atmosphere. This may

reduce the estimation accuracy when satellite data is used

instead of airborne data. On the other hand, the measure-

ment conditions (e.g. solar angle, weather) will be more

constant as the image is acquired in a single moment, which

should improve the retrieval accuracy. Using retrieval algo-

rithms based on channel ratio or difference indices reduces

the effect caused by the atmosphere, but some kind of

correction may still be necessary. For MERIS data, possible

atmospheric correction methods are presented by Antoine

and Morel (1999) and Moore, Aiken, and Lavender (1999).

The classification accuracy remained high for all three

variables even when the retrieval algorithms were tested

using separate test data sets neglecting the nearly simulta-

neous reference data in training the algorithms. This sug-

gests that the current database should be large enough for

operational monitoring of the lakes used in the survey. The

results are only valid for August. The limited data from May

indicate that the algorithms may vary seasonally (Kallio et

al., 2001). Therefore, the algorithms presented here should

be first thoroughly tested before applying them to other

seasons. The system developed here for August should also

work well for lakes that are similar to the ones used here.

For other lake types, more concurrent ground truth and

remote sensing data are needed. However, Finnish lake

types are fairly well covered in the present data set.

The division of data into two classes based on Secchi

depth did not improve the accuracy of an operational chl-a

retrieval system. However, the preclassification of the data

may still be reasonable, because it allows the use of optimal

algorithms for different lake types. For example, Kallio et al.

(2001) demonstrated that the use of radiance measured at

shorter wavelengths 685–691 nm instead of 699–705 nm in

the numerator of the chl-a algorithm improved the accuracy

of estimations for the oligotrophic and mesotrophic lakes.

The classification limits used here were selected by

combining two classification systems, each of which has

its strengths and weaknesses. For example, the national

system was developed for Finnish lakes, but it is not used

elsewhere and, therefore, comparison with results from

other areas may be difficult. The OECD system, on the

other hand, was developed for European lakes and compar-

ison is easier, but some of the variable limits are not well

suited for Finnish lakes. Chl-a classification was here based

on the OECD system that is applicable for European lakes,

while the classification limits for Secchi depth and turbidity

follow the practically more suitable national system.

The current operative lake classification system used in

Finland is based on the measurements at fixed stations

(laboratory analyses of water samples). These stations (or

in some cases just one station per lake) may not always

present the actual condition of a lake in the best possible

way. Perhaps the worst flaw of the current classification

system is that the spatial resolution is limited. With remote

sensing instruments, it is possible to see how the values of

water quality variables are distributed spatially and, thus, get

information on the complete status of the lake. Information

on the relative spatial variations of water quality variables is

also interesting even though the absolute accuracy is not as

good as with laboratory techniques.

The accuracy of a classification system also depends on

the number classes the system uses. In this analysis, the

number of classes is only five or less and part of the success

may be attributed to that. However, in most cases, no

information at all is available from smaller lakes so even a

coarse classification is useful. Furthermore, the experts who

generated the operative classification systems discussed

here have only used at most five classes.

One problem with low and medium resolution satellite

data (e.g. MERIS) is that Finnish lakes are typically small

and irregular in shape and may include small islands. The

Table 10

Classification accuracy for all cases (%)

Method Secchi Turbidity Chl-a

AISA (all data) 88 76 81

AISA (daily training) 90 79 78

MERIS 89 77 80
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radiation reflected from the shore and the vegetation near

the shore is usually stronger than the radiation from water.

Therefore, if even a small portion of a pixel is covered by

land the retrieval of water quality variables may not be

possible. However, the 300-m nadir resolution of MERIS

should be good enough for large and medium size lakes if

the rectification accuracy is good.

When variables that have continuous values are classi-

fied, some misclassifications at the edges of class limits are

inevitable. This is also probably the reason why the classi-

fication accuracy for turbidity and Secchi depth is better

when not all data are used for training as a slight change in

the value of a data point can change the class. In any case,

the system used here seems to work well since only one data

point for chl-a was misclassified by more than one class.

6. Conclusions

The classification of lake water quality, using parameters

Secchi depth, turbidity, and chl-a, is possible with airborne

imaging spectrometers. The class limits were obtained from

two operational classification standards and a combination

of them was determined to be most suitable when remote

sensing data is used. In most cases, the classification is

possible even without concurrent ground truth data. This

indicates that operational classification with remote sensing

data is possible. The classification accuracy ranges from

76% to 90%.

The main advantage of remote sensing over the tradi-

tional lake monitoring method based on water sample

collection is its good spatial and temporal coverage. Mon-

itoring can be carried out several times per year and lakes

not included in the traditional sampling can be also moni-

tored. The channel configuration of the Envisat MERIS

instrument also appears to be suitable for the classification

of turbid lakes, such as Finnish lakes.
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la, K., Pylkkö, P., & Braam, B. (1993, August 18–21). Airborne Imag-

ing Spectrometer for Applications (AISA). Digest of IGARSS’93, 2,

479–481 (Tokyo, Japan).
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