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Abstract
This paper provides a comparative analysis of land use and land cover (LULC) changes among
three study areas with different biophysical environments in the Brazilian Amazon at multiple
scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years
of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with
the post-classification comparison approach. A classification system composed of six classes –
forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious
surface, and water, was designed for this study. A hierarchical-based classification method was
used to classify Landsat images into thematic maps. This research shows different spatiotemporal
change patterns, composition and rates among the three study areas and indicates the importance
of analyzing LULC change at multiple scales. The LULC change analysis over time for entire
study areas provides an overall picture of change trends, but detailed change trajectories and their
spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon
scale provides the information of the changes in patch sizes over time, while the LULC change at
census sector scale gives new insights on how human-induced activities (e.g., urban expansion,
roads, and land use history) affect LULC change patterns and rates. This research indicates the
necessity to implement change detection at multiple scales for better understanding the
mechanisms of LULC change patterns and rates.
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1. Introduction
Deforestation has been regarded as one of the most important factors affecting climate
change, biodiversity, and other environmental conditions (Skole et al. 1994, Hirsch et al.
2004, Fearnside 2005). Monitoring of forest and savanna deforestation in the Brazilian
Amazon has received much attention in the past three decades. Two systems, i.e., PRODES
– Program for the Estimation of Deforestation in the Brazilian Amazon (http://
www.obt.inpe.br/prodes/) and DETER – Real Time Deforestation Monitoring System
(http://www.obt.inpe.br/deter/) have been developed to monitor annual deforestation using
Landsat and MODIS data respectively. According to the INPE (National Institute for Space
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Research) report, a total area of 392,020 km2 of forest was deforested in the Brazilian
Amazon between 1988 and 2011 (http://www.mongabay.com/brazil.html). A large area of
primary forest and savanna has been converted into secondary succession, agroforestry,
pasture, agricultural fields, and infrastructures (Lucas et al. 2000, Roberts et al. 2002,
Cardille and Foley 2003, Carreiras et al. 2006, Lu et al. 2012a). In addition to the monitoring
of primary forest, timely detection of other land use and land cover (LULC) change,
especially secondary succession and agriculture expansion, is also important for better
management and planning of the deforested areas (Lu et al. 2012a).

Research on LULC change detection has attracted great attention in the past three decades
(e.g., Singh 1989, Coppin et al. 2004, Lu et al. 2004a, Kennedy et al. 2009, Chen et al.
2012). Multitemporal remotely sensed data, especially time series Landsat images have been
widely used for examining LULC change (Masek et al. 2008, Vogelmann et al. 2009, Huang
et al. 2010, Thomas et al. 2011, Hansen and Loveland 2012). Although many change
detection techniques have been developed, most of them are only used to detect binary
change and non-change categories (Lu et al. 2004a). In practice, detailed “from-to” change
trajectories are often required for better understanding LULC change patterns and rates.
Post-classification comparison is the most common method to examine LULC change
trajectories. Traditionally, LULC change detection is implemented at the per-pixel level, but
analysis of LULC change at multiple scales may provide new insights on change patterns
and rates. Therefore, this paper aims to analyze LULC change at different scales: per-pixel,
polygon, census sector, and total study area using multitemporal Landsat images acquired in
the years of 1990/1991, 1999/2000, and 2008/2010 within three study areas having different
biophysical conditions in the Brazilian Amazon.

2. Methods
Altamira and Santarém in Pará State and Lucas do Rio Verde (hereafter, Lucas) in Mato
Grosso State were selected for this research (Figure 1). The three study areas have different
biophysical and socioeconomic conditions, as summarized in Table 1. This research
employs multitemporal Landsat images to examine LULC change. Figure 2 provides a flow
chart of this research, which includes image preprocessing, image classification using the
hierarchical-based method, and change detection analysis at different scales.

2.1 Data collection and preprocessing
Landsat images used in this research were summarized in Table 2. All Landsat images with
spatial resolution of 30 m were atmospherically calibrated with the improved image-based
dark object subtraction method (Chavez 1996, Chander et al. 2009). The Landsat Thematic
Mapper (TM) images that were downloaded from USGS (http://glovis.usgs.gov/) had been
georeferenced already into Universal Transverse Mercator (UTM) coordinate system and
their geometric accuracy met our research requirement, but the TM images obtained from
Brazilian INPE had geometric errors that required implementing image-to-image registration
based on the georeferenced images. Root mean square errors of less than 0.5 pixels were
obtained.

In the moist tropical regions of the Brazilian Amazon, cloud cover is often a problem
prohibiting the collection of cloud-free Landsat images (Asner 2001). In the Altamira and
Santarém study areas, completely cloud-free Landsat images are not always available, thus,
we used multiple Landsat images to remove the cloud/shadow problem, assuming that the
clouds are located at different areas at various image acquisition dates. For example, in
Altamira, we used the 2000 Landsat Enhanced Thematic Mapper Plus (ETM+) image as a
reference image because of its relatively good quality for the majority of the study area. The
cloud/shadow areas in this image were replaced with the 1999 Landsat TM image (see
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Figure 3). Because some clouds/shadows were still on both the 2000 ETM+ and the 1999
TM images, the 2003 TM image was used to replace the clouds/shadows because no other
cloud-free Landsat images were available at the years close to 2000. Before implementing
the replacement of clouds/shadows in a reference image, image-to-image normalization
between the reference image and subject images was conducted by a regression-based
method using pseudo-invariant objects such as road intersections and water which were
selected from the multiple Landsat images (Heo and FitzHugh 2000, Yang and Lo 2000, Du
et al. 2002). The reflectance values from the 2000 ETM+ images were used as a dependent
variable and a regression model for each band was developed to calibrate the 1999 TM and
the 2003 TM images. The same method was used in Santarém for replacement of clouds/
shadows in the reference image. Because of the confusion of the spectral signatures among
clouds, urban landscape, and agricultural lands, and between shadows and water bodies,
automatically detecting clouds/shadows, especially the relatively light clouds/shadow, is
often difficult. Therefore, we visually interpreted the clouds/shadows on the color
composites by assigning near infrared, shortwave infrared and red wavelength band images
as red, green and blue. The identified pixels having clouds/shadows in the reference image
were then replaced with the spectral values of the same location from other spectrally
normalized Landsat images.

Field surveys were conducted in Altamira in July–August 2009, in Santarém in 2010 and
1999, and in Lucas in 2009. The field surveys mainly collected sample plots in rural areas
which documented different stages of secondary forest, pasture, and crop fields, as described
in Li et al. (2011). QuickBird images for the three study areas were used to collect sample
plots in urban and urban-rural frontiers. The reference data collected from field surveys and
QuickBird images had two roles in this research, one was to support the identification of
thresholds used in the hierarchical-based classification method, and another was to use as
sample plots for accuracy assessment.

According to our project requirement and this research purpose, a classification system with
six LULC classes – primary forest, savanna, other vegetation (e.g., secondary succession,
plantations), agro-pasture (agricultural fields, pasture), impervious surface, and water, was
designed for this study. In cases where clouds/shadows could not be completely removed
from the multiple Landsat images, another class called cloud/shadow was included in
preliminary classification results, but this class was removed from the final result through a
post-processing procedure to accurately examine the LULC change patterns and rates in
these study areas.

2.2 Development of LULC datasets and accuracy assessment
2.2.1 LULC classification with the hierarchical-based method—Many
classification algorithms are available (Lu and Weng 2007, Tso and Mather 2009); however,
developing an accurate classification result from remotely sensed data is still a challenge.
Many factors, such as spatial and spectral resolution of the satellite imagery, available
reference data, classification algorithm, and analyst's experience, may affect the
classification (Lu and Weng 2007). In particular, a sufficient number of representative
training samples are critical for the supervised classification algorithms. Many previous
studies have documented the difficulty in LULC classification in the Brazilian Amazon due
to the spectral confusion between different LULC types, such as among impervious
surfaces, bare soils and non-vegetation wetland and the complex vegetation types and
structures (Lu et al. 2004b, Lu et al. 2012b). In our previous research in the Brazilian
Amazon basin, we have extensively examined LULC classification using different sensor
data (e.g., Landsat, ASTER, SPOT, and radar) and different classification algorithms (e.g.,
maximum likelihood, neural network, decision tree, support vector machine, K-nearest
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neighbor) (Li et al. 2011, 2012a, b, Lu et al. 2012b). We found that the hierarchical-based
classification method is valuable for LULC classification, especially when training sample
data are not available for historical remote-sensing data (Lu et al. 2012a). The hierarchical-
based method used four steps in the classification procedure: (1) stratification of LULC
classes to reduce the spectral confusion among different classes; (2) use of the analyst's
knowledge and experience to merge the clusters into meaningful LULC classes; (3)
manually editing the classification results in each step to further refine the misclassified
classes; and (4) post-processing based on the multi-temporal classified images to further
correct misclassification. A detailed description of the hierarchical-based classification
method is provided in Lu et al. (2012a). Therefore, this method is used in this research for
LULC classification for the three study areas.

2.2.2 Refinement of LULC classification results—Even though the majority of
clouds/shadows were removed from the reference image, some dispersed clouds/shadows
still remained because some clouds were in the same location in different dates of images
(Figure 3). It is important to further remove clouds/shadows in the classified images because
of the requirement of accurately analyzing the LULC dynamic changes. A comparison of the
multitemporal classification images and Landsat color composites among 1991, 2000 and
2008 in Altamira indicated that many clouds/shadows were located in forest areas. We
employed three successive steps to replace the cloud/shadow pixels with the specific LULC
types in the classification images:

1. Automatic replacement: If the pixels were classified as clouds/shadows in the prior-
date classification image, but they were classified as forest in the posterior-date
classification image, these pixels in the prior-date classification image were re-
assigned as forest;

2. Visual editing: The classified image was overlaid on corresponding Landsat color
composite, highlighting the pixels of clouds/shadows and assigning these pixels to
a proper LULC class by visual interpretation of the color composite;

3. Majority filtering: Some single pixels of clouds/shadows in the classification
images were removed using the majority filtering function, i.e., the pixel of the
clouds/shadows was used as a center and a majority filter with a window size of 5
by 5 pixels was used to re-assign a LULC class to the center pixel.

In addition to the rules that were used for removal of clouds/shadows, other rules were used
to correct the misclassification between primary forest and other-vegetation (mainly
advanced succession) classes and between impervious surface and agro-pasture:

1. If the pixels in the prior-date classification image were forest, but were difficult to
determine if they were primary forest or advanced succession in the posterior-date
classification image, re-assign these pixels to forest in the posterior-date
classification image;

2. If the pixels in the prior-date classification image were other-vegetation class, but
were difficult to determine whether they were other vegetation or primary forest in
the posterior-date image, re-assign these pixels to other vegetation in the posterior-
date classification image;

3. If the pixels in the prior-date classification image were impervious surface, but
were difficult to determine whether they were agro-pasture or impervious surfaces
in the posterior-date classification image, re-assign these pixels to impervious
surfaces;
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In order to implement accurate analysis of agro-pasture dynamic change in rural areas, it is
necessary to distinguish agro-pasture in rural area from grass in urban landscape, because
the similar spectral features between grass in urban landscapes and pasture in rural
landscapes during the dry season often results in misclassification. However, pasture is
mainly distributed in rural landscapes, and so we were able to visually define the boundary
of urban landscapes, and re-assign the classified agro-pasture in urban landscape as grass.
After all above post-processing procedures were conducted on the classification images,
accuracy assessments were implemented for the three study areas.

2.2.3 Evaluation of LULC classification results—Accuracy assessment is often
required for better understanding the quality and reliability of a classification image. In
general, overall classification accuracy and kappa coefficient are often used to assess the
overall performance in a classification, while producer's accuracy and user's accuracy are
used to evaluate the performance of each LULC class. These parameters are calculated from
the error matrix, as described in previous literature (e.g., Foody 2002, Congalton and Green
2008). In this study, a total of 413 sample plots were collected from the 2009 field work and
the 2008 QuickBird image in Altamira and they were used to evaluate the 2008
classification image. In Santarém, 546 sample plots were collected from the 2010 field work
and the 2008 QuickBird image and were used for evaluating the 2010 classification image.
Another 265 sample plots were collected in the 1999 field work and were used to evaluate
the 1999 classification image. In Lucas, a total of 300 sample plots were collected from the
2008 QuickBird images and the 2009 field survey and were used to evaluate the 2008
classification image. The QuickBird images mainly covered the urban landscapes, thus,
these images were primarily used to collect samples in the urban landscape, while field
surveys were conducted in the deforested regions in rural areas. A detailed description of
field data collection was provided in Li et al. (2011). Because reference data were not
available for other dates of classification images, no accuracy assessments were conducted
for these results, but we were confident that these results had similar classification accuracy
based on our previous work using the hierarchical-based classification method (Lu et al.
2012a).

2.3 Analysis of LULC dynamic changes at multiple scales
In general, change detection is implemented at per-pixel level based on the classified
images. However, change detection analysis can also be conducted at other scales such as
polygon, census sector and overall scales, which are the foci of this research.

2.3.1 Analysis of LULC change at overall scale—The total area for each LULC class
in each study area was calculated from the per-pixel based classification image. The
proportion of each LULC type in a study area was calculated as:

Meanwhile, the change for each LULC type in a study area was calculated:

Where Ait1 and Ait2 represent a total area of the LULC type i at date t1 and date t2
respectively. The change analysis at overall scale provided the overall gain or loss for
specific LULC types, but cannot provide the detailed LULC trajectories.
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2.3.2 Analysis of LULC change at per-pixel scale—The post-classification
comparison approach was used to examine the detailed LULC change trajectories at per-
pixel scale. The major change trajectories in this research included

1. Deforestation of primary forest: the conversion from primary forest to other
vegetation, or to agro-pasture, or to impervious surfaces;

2. Deforestation of savanna: the conversion from savanna to other vegetation, or to
agro-pasture, or to impervious surfaces;

3. Deforestation of other-vegetation: the conversion from other vegetation to agro-
pasture or to impervious surfaces;

4. Loss of agro-pasture lands: the conversion from agro-pasture to other vegetation or
to impervious surfaces.

5. Other changes: water change and the changes due to the errors of image-to-image
registration. These changes were not the foci of this research.

From above major LULC change trajectories, we can further examine (a) dynamic change of
other vegetation class (gain due to the deforestation of primary forest and savanna, and loss
from the conversion from other vegetation to agro-pasture and to impervious surfaces), (b)
dynamic change of agro-pasture (gain due to the conversion from primary forest, savanna,
and other vegetation to agro-pasture, and loss due to the conversion from agro-pasture to
other vegetation or impervious surfaces), and (c) expansion of impervious surface areas
(e.g., gain due to the conversion from primary forest, other vegetation, savanna, and agro-
pasture to impervious surfaces).

The change and non-change areas were calculated from each change detection result. The
percent of total changed area was calculated as: (total changed area/total study area)*100;
and the annual percent of changed area was calculated as: percent of total changed area/
number of years during the change detection period. Meanwhile, the area and percent of
each change trajectory were calculated from the change detection images for analyzing the
change detection trends among the three study areas.

2.3.3 Analysis of LULC change at census sector scale—Census sectors as defined
by Instituto Brasileiro de Geografia e Estatística (IBGE) are the minimum areal units created
for the purpose of cadastral control of data collection. Many important variables related to
population and economic conditions are organized at the census sector scale and are
accessible for public use. These variables are critical for examining forces driving LULC
change, thus, it is important to examine the LULC dynamic change at the sector scale but
this has not been examined in previous research. Here we examined the LULC change at the
sector scale as defined by the 2010 Brazilian census. Emphasis was placed on the LULC
change in rural landscapes for examining the deforestation, regeneration and agriculture
dynamic change. A pie graph was used to illustrate the proportions of each changed LULC
type based on the percent of changed area at each census sector. Since some census sectors
partially located outside of the classification image, only the census sectors within the study
area were analyzed.

2.3.4 Analysis of LULC change at polygon scale—The classification system used in
this research includes six LULC classes – primary forest, savanna, other vegetation, agro-
pasture, impervious surface, and water. There is no savanna in Altamira and very limited
savanna areas in Santarém, but savanna in Lucas accounts for a large proportion of land
cover in the 1980s and 1990s. Impervious surface area and water account for a very small
proportion in the three study areas and they are not the foci of this research. Therefore, the
emphasis of LULC change at polygon scale in this research was on the dynamic change of
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forest, agro-pasture, and other-vegetation classes for Altamira and Santarém, and of forest,
savanna and agro-pasture for Lucas. The classified images in raster format were converted
into vector format shapefile polygons. The polygons with areas of less than 2 ha were
merged to the nearest polygon by considering the minimum analysis size of these LULC
types and the reduction of noise caused by the per-pixel based classification method. The
areas of all polygons for each identified class were then calculated and the corresponding
number of polygons with each polygon area range of less than 5 ha, [5-10), [10-30), [30-50),
[50-100), [100-200), [200-500], and greater than 500 ha, was calculated (note: [5-10) means
the area ranges of greater than or equal to 5 ha but less than 10 ha). The scale-bar graph for
each polygon area range for these LULC types was used to examine the dynamic change of
patch sizes at different dates and study areas for understanding the patterns of these LULC
dynamic changes.

3. Results
3.1 Evaluation of LULC classification results

The classification accuracy assessment results for three study areas indicated that the
hierarchical-based classification method effectively classified Landsat images into six-class
thematic maps (see Table 3), providing the fundamental data sources for examining LULC
change trajectories. Santarém and Lucas have higher overall classification accuracy (e.g.,
91.7%-93.7%) than Altamira (i.e., 84%). The major problem causing relatively low accuracy
in Altamira was the misclassification between advanced succession vegetation and primary
forest due to their complex vegetation stand structure and species composition, and between
initial succession (other vegetation) and dirty pasture (agro-pasture) due to the lack of a
clear boundary between them. A similar situation was present in Santarém, but less so due to
lower fertility conditions. For Lucas, some savanna (cerrado) was confused with other
vegetation or agro-pasture due to the wide variation of savanna in species composition and
density (Lu et al. 2012a). Although no accuracy assessment for other dates of classified
images in the three study areas were implemented due to the lack of reference data, their
classification results were believed to have similar accuracies, as our previous research had
proven that the hierarchical-based classification method was reliable and stable (Lu et al.
2012a).

3.2 Analysis of LULC change at different scales
3.2.1 Analysis of LULC change at overall scale—A comparative analysis of the total
area for each LULC class among the three study areas indicated that the composition of
LULC classes varied considerably at different dates, as shown in Table 4. In Altamira and
Santarém, forest accounted for the largest proportion of land covers but decreased rapidly in
the past two decades. Other vegetation in Altamira had higher increasing rate than agro-
pasture, but this trend was inversed in Santarém. There were no savanna areas in Altamira
and very limited areas in Santarém, but savanna (or cerrado) in Lucas accounted for 23.9%
of the study area in 1990, and rapidly decreased to only 9.5% in 1999. The continuous loss
of forest and savanna in Lucas was largely a result of the increase in agro-pasture, which
increased its proportion from 45.8% in 1990 to 67.7% in 2008. Figure 4 shows the LULC
distributions in the three study areas, indicating the largest proportion of primary forest in
Altamira and Santarém and of agro-pasture in Lucas, and indicating the obvious agro-
pasture expansion and deforestation within the same periods.

Table 4 also indicates that loss of primary forest between 1991 and 2000 in Altamira
resulted in expansion of both agro-pasture and other-vegetation classes, but its loss between
2000 and 2008 was mainly due to agro-pasture expansion. In Santarém, deforestation was
mainly due to the conversion of primary forest to both agro-pasture and other-vegetation

Lu et al. Page 7

Int J Remote Sens. Author manuscript; available in PMC 2014 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



classes, especially other-vegetation over time. In Lucas, deforestation of primary forest and
savanna between 1990 and 1999 was mainly due to agro-pasture expansion, but
deforestation area between 1999 and 2008 was considerably decreased due to the constraint
of available forest/savanna areas, and the limited deforestation of primary forest that did
occur was due to the expansion of agro-pasture, impervious surfaces, and other vegetation.
The results in Table 4 indicate the considerably different LULC change amounts in the three
study areas during two detection periods. However, Table 4 only provides the overall
information of LULC dynamic change, it does not provide detailed information about LULC
change trajectories and the corresponding spatial patterns of change.

3.2.2 Analysis of LULC change trajectories at per-pixel scale—The detailed
change trajectories for major LULC classes in Table 5 indicate that different study areas in
both detection periods had considerably different change trajectories and amounts. Altamira
and Santarém have much higher amounts of changed areas than Lucas, but the percentage of
total changed area or average annual percentage of changed area in Altamira is much higher
than in Santarém, as shown in Table 5, because Santarém has a large unchanged area of
primary forest (see Figure 4 and Table 4). Major LULC change trajectories include
deforestation of primary forest, dynamic change (gain or loss) of other-vegetation and agro-
pasture in Altamira and Santarém, but in Lucas, the majority of change is the conversion of
savanna to agro-pasture. The percent of gained areas for agro-pasture and other-vegetation
classes in three study areas were much higher than the percent of their loss areas. As shown
in Table 5, deforestation in Altamira is prone to agro-pastural expansion, in Santarém it is
prone to expansion of other vegetation type; while in Lucas, deforestation is mainly due to
agro-pasture expansion in the 1990s, but in the 2000s, expansion of other vegetation and
impervious surface areas become another important factor resulting in deforestation. Figure
5 illustrates the spatial distribution of LULC change, indicating that the obvious changes in
Altamira and Santarém were the conversion of forest to agro-pasture and other vegetation,
and the transform between other vegetation and agro-pasture; but for Lucas, one obvious
change was the conversion of savanna to agro-pasture between 1990 and 1999, and the
expansion of impervious surface areas between 1999 and 2008. In the three study areas,
impervious surface increase was mainly at the expanse of agro-pasture, although some
conversion from forest and other vegetation, especially in rural regions, was observed.

3.2.3 Analysis of LULC change at census sector scale—Based on the percent of
total changed area in a sector, we grouped census sectors into three groups in Altamira, five
groups in Santarém, and two groups in Lucas (Figure 6). The patterns and rates of LULC
changes illustrated in Figure 6 imply that the distance to the major urban areas, road
expansion, and land use history may be related to the LULC change. For example, major
deforestation in Altamira began in the early 1970s, coincident with the construction of the
transamazon highway (see Figure 1) Moran, 1981). In the 1980s, major deforestation
occurred close to the Altamira city and along the highway (Moran et al. 1994). Between
1991 and 2000, the sectors away from the urban area (A2 in Figure 6) had higher LULC
change rates than in the areas close to the urban area (A1), and the sectors far away from
urban (A3) had the lowest change rate. However, the changes between agro-pasture and
other-vegetation had high proportion near the urban region (see A1), slightly decreased
away from urban (see A2), and were lowest in rural regions (see A3). After entering the
2000s, the conversion of forest to other-vegetation or agro-pasture was reduced, while the
conversions of other vegetation to agro-pasture increased considerably, especially close to
the urban region compared to the conversions in the 1990s.

Santarém has a much longer land use history than the Altamira and Lucas study areas.
During the 1990s, the S2 and S1 groups close to the Santarém urban region had higher
LULC change rates than the S4 and S5 groups away from urban region, and the dynamic
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change between other vegetation and agro-pasture accounted for the high proportions in the
S1 and S2 groups, while the conversion of forest and other vegetation to agro-pasture
accounted for the largest proportion in the S4 group, and the conversion of forest to agro-
pasture accounted for the large proportion in the S5 group (see Figure 6). The S3 group had
lower LULC change rate than other groups because of the forest conservation policy close to
the Tapajos River (see Figure 1). After entering the 2000s, LULC change in each sector
group had higher rates than that in the 1990s. The conversion of agro-pasture to other
vegetation accounted for a large proportion in the S1 group and some sectors in the S2 group
where the sectors are relatively close to the urban region; on the other hand, the conversion
of other vegetation to agro-pasture accounted for a large proportion in most of the sectors in
the S2 and S4 groups where the sectors are relatively away from the urban region. In
contrast, the conversion from forest to other vegetation accounted for the largest proportion
in the S5 group. The S3 group in the 2000s had high LULC change rates due to the road
expansion in the Belterra region close to the BR163 highway, resulting in higher conversion
from forest and other vegetation to agro-pasture.

Lucas has a relatively short land use history because major deforestation was started after
the county was established in 1982. Deforestation of forest and savanna was especially high
in the 1980s, and reduced rapidly in the 1990s and 2000s (Lu et al. 2012a), because of the
restriction of available forest and savanna resources. The percent of changed areas for those
sectors near the Lucas city had higher values than the sectors away from the city (L1 versus
L2) in 1990-1999, but inverse in 1999-2008. The proportion of impervious surface areas in
1999-2008 increased much higher than in 1990-1999, especially close to the urban area (i.e.,
the L1 sector group).

3.2.4 Analysis of LULC change at polygon scale—Considering the changes in patch
sizes of forest class over time among three study areas, a common trend was that the number
of polygons increased considerably but the average sizes decreased rapidly (See Table 6),
implying increasingly fragmented forest landscape after deforestation. For the other-
vegetation class, the number of polygons in both Altamira and Santarém increased, similarly
to forest, but the average size of polygons was much smaller, implying that the other
vegetation class was much more fragmented than forest. Altamira had a relatively small
average size of other vegetation patch compared to Santarém; this may be because the good
soil fertility in Altamira resulted in a relatively short rotation period between the dynamic
change of other vegetation and agro-pasture (Lu et al. 2002). For agro-pasture, the number
of polygons was highest in the year 2000/1999 for both Altamira and Santarém, but the
average patch size increased gradually from 1991 to 2008/2010, implying an increase in
large scale mechanized agriculture. In Lucas, the number of polygons in the year of 1999
had the lowest number but highest average size, implying that the rapid road expansion after
1999 had resulted in the replacement of agro-pasture. Overall, Lucas had much larger
average sized polygons for agro-pasture than Altamira and Santarém. This might be
expected considering the large scale mechanized agriculture found in the county.

The analysis of changes in numbers of polygons along different area ranges is helpful for
understanding the fragmentation due to LULC change, as shown in Figure 7. When the
patch size was greater than 30 ha, the number of polygons sharply decreased, especially in
Altamira and Santarém, because deforestation, urbanization and road expansion often
resulted in complex LULC composition. For forest, the number of polygons increased from
the early 1990s to late 2000s, implying the increased fragmentation due to deforestation.
However, it is also observed that the number of polygons in large patch size (e.g., greater
than 500 ha) increases, especially in Santarém. This is because the forest in early 1990s
having a huge size (thousands of ha) with a limited number of patches become a relatively
small size of forest patches (less than a thousand ha) due to the road construction and
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deforestation, as shown in Figures 4 and 5. The increased numbers of polygons for the other-
vegetation class in Altamira and Santarém implied that larger patch sizes appeared over
time. The decreased number of relatively large patch sizes of savanna areas in Lucas may
imply that a limited area of savanna remained due to its conversion to agro-pasture.
Concerning agro-pasture in Altamira and Santarém, the number of polygons gradually
decreased over time when patch size was less than 30 ha, but the numbers of polygons
increased over time as patch size increased, implying the increased farming sizes over time
because of the use of mechanization.

4. Discussion and summary
4.1 Improvement of LULC classification results

Development of accurate LULC classifications has been an active research topic in the past
four decades since the first earth observation satellite was launched in the early 1970s. Great
progress in improving LULC classification has been made, including incorporation of
multiple sources of remote sensing data (e.g., optical sensor data, radar, LiDAR) and/or
ancillary data (e.g., DEM, population density), development of advanced classification
algorithms (e.g., neural network, support vector machine, random forest decision tree), and
application of expert knowledge for post processing (Lu and Weng 2007, Lu et al. 2012b).
However, classification is a complex procedure, the results of which may be affected by
many factors such as the characteristics of the study area, selected data sources (e.g., remote
sensing data, ancillary data, ground truth data), classification algorithms, and the analyst's
experience (Lu and Weng 2007). Previous research has paid much attention to the
application of multi-source remote sensing data and advanced classification algorithm, but
misclassification often occurred due to the complex biophysical environments resulting in
similar spectral or radiometric data and the constraint of remote sensing data and techniques.
In the Brazilian Amazon, we have extensively examined the employment of different sensor
data (e.g., optical sensor data, radar) (Li et al. 2011, 2012b, Lu et al. 2011) and different
classification algorithms (Li et al. 2012a, Lu et al. 2012b). We found that no matter what
remote sensing data or classification algorithms were used, there were still some
misclassifications that could not be automatically separated from the remote sensing data.
Incorporation of human knowledge during the classification procedure is necessary to
improve LULC classification. Therefore, the hierarchical-based method that combined
automatic classification and manual editing had proven valuable to provide reliable LULC
classification (Lu et al. 2012a).

Post processing of the classification image has been regarded as an effective method to
further improve classification accuracy. Ancillary data such as DEM is often used by
relating expert knowledge of LULC distribution to topographic factors (e.g., elevation,
slope, aspect) (Lu and Weng 2007). The key is to develop the expert rules that can be used
to correct the misclassification. This research provides an alternative to conduct the post
processing by establishing some reasoning knowledge based on the multitemporal
classification results. This is especially valuable when good-quality ancillary data are not
available such as in the Brazilian Amazon. Since a variety of sensor data with different
spatial and spectral resolutions are available, more research should be focused on the
combined use of the different source data or on the modeling of multi-scale remote sensing
data to improve LULC classification.

4.2 The necessity of LULC change detection at different scales
The information for detailed LULC change trajectories is often required for change
detection research, and often derived using the post-classification comparison approach at
per-pixel level (Lu et al. 2004a, Kennedy et al. 2009, Hansen and Loveland 2012).
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Concerning the application of LULC change detection results, analysis of LULC change at
multiple scales may provide new insights for better understanding of the spatial patterns and
rates of LULC change and the relationship between LULC change and socioeconomic
variables collected at administrative units at varying scales of analysis.

At overall scale, the change detection results provide overall LULC change trends, but
conceal the inner change trajectories and their spatial patterns, especially the dynamic
changes between other vegetation and agro-pasture in this research. For example, the gain of
agro-pasture lands can be due to the conversion from primary forest, other vegetation, and
water/wetland, while the loss of agro-pasture lands can be due to the conversion from agro-
pasture to other vegetation or to impervious surface areas. The change detection results at
overall scale cannot reflect above change trajectories, but the change detection analysis at
per-pixel scale can overcome these shortcomings. The per-pixel based change detection
analysis is especially valuable when the information of detailed LULC change spatial
patterns is required.

Although change detection studies at census sector and polygon scales are not common in
previous research, their results indeed provide some new opportunities for analysis that the
per-pixel based change detection results do not, such as the ability to relate the change
results to human-induced activities. In order to better manage the deforested areas, it is
required to understand the anthropogenic factors affecting deforestation or LULC change.
Since the anthropogenic-relevant variables such as demographic and socioeconomic data are
often organized and accessible at administration units (e.g., census sectors, township or
county level), we need to examine the LULC change at the same scales corresponding to the
administration units. At polygon scale, we may better understand how human-induced
activities such as deforestation, road construction, and urbanization affect the fragmentation
of the LULC distribution. Therefore, it is desirable to implement LULC change detection at
multiple scales for better examining the LULC dynamic change in a specific study area.

4.3 A summary of research results
Through the analysis of LULC change at different scales based on three dates of Landsat
images among three study areas in the Brazilian Amazon this research indicates the
necessity to investigate LULC change at multiple scales for better understanding of the
mechanisms of LULC change and the effective use of the LULC results in interdisciplinary
research. The major conclusions can be summarized as follows:

1. Change detection at overall scale provides important information of overall LULC
change trends but conceals inner LULC change within the study area and their
spatial patterns.

2. Change detection at per-pixel scale provides the detailed LULC change trajectories
and their spatial patterns. These results are often the fundamental data source for
further examining LULC change at other scales such as different administration
units.

3. Change analysis at the census sector scale provides valuable datasets for the
analysis involving the linkage of LULC change and anthropogenic factors such as
population density and socioeconomic conditions.

4. Change analysis at polygon scale can provide important data sources for examining
how human and natural-induced factors affect LULC fragmentation within the
study area.
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Figure 1.
Three study regions – Altamira and Santarém in Pará State and Lucas do Rio Verde in Mato
Grosso State. Background images are red-band images from the Landsat 5 scenes acquired
in July 2010 for Altamira and Santarém and in July 2008 for Lucas do Rio Verde. The
dashed rectangles delineate the study areas in Altamira and Santarém and the dashed
polygon delineates the boundary of the Lucas County. The white circle and black dot
indicate the major urban location for each study area.
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Figure 2. Flow chart of the research
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Figure 3.
A comparison of multiple Landsat images (near infrared, shortwave infrared, and red band
images were assigned as red, green and blue in this color composite) in Altamira showing
the cloud/shadow problem (note, the 2000 ETM+ scene image covers the entire study area,
but both the 1999 and 2003 TM scene images lack a small part of data).
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Figure 4. LULC maps of the three study areas derived from Landsat images
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Figure 5. LULC change maps at per-pixel scale for the three study areas
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Figure 6. LULC change results at census sector scale for the three study areas in the Brazilian
Amazon [note: the number in this figure represents the percent of total changed area accounting
for total area in the sector, i.e., (total changed area/total area in a sector)*100]
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Figure 7.
Comparison of patch sizes of major LULC types among different dates at three study areas.
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Table 1
Major characteristics of the three study areas in the Brazilian Amazon

Study areas Altamira Santarém Lucas do Rio Verde

Geographic location
Located in the northern Pará State,
Altamira is an important
Transamazon hub that links to
markets through the Transamazon
Highway (BR-230). The extent of
this study area is 7,512 km2,
covering the major deforested
regions along the highway BR-230
and our traditional study area in
the past two decades.

Located at the confluence of the Amazon
River and the Tapajós River, Pará State,
Santarém is linked to global markets
through the export hub for agriculture
commodities that originate in Mato Grosso
State; reached by the east-west
Transamazon (BR-230) Highway and its
north-south link, the Cuiabá-Santarém
(BR-163) Highway, both completed in the
early 1970s. The extent of this study area
is 12,078 km2, covering our traditional
study area in the past decade.

Located at the central area of
Mato Grosso State, Lucas is
connected to Santarém in north
and to the heart of Brazil's
soybean-growing region at
Cuiabá via the BR-163 highway.
The extent of this study area is
3,663 km2, covering the Lucas
county.

Biome Amazon tropical moist forest -
Liana forest

Amazon tropical moist forest and areas of
tropical savanna thought to be edaphic

Tropical savanna (cerrado) and
Amazon forest

Land use history Deforestation since the early
1970s has led to a complex
landscape consisting of different
succession stages, pasture,
agroforestry and agricultural lands.
Because this region has better than
average soils, the area has a strong
and stable basis for agropastoral
production, including cocoa and
sugar cane.

Inhabited early by Tapajós indigenous
communities. Different road networks
extending out of the city of Santarém are
associated with differing historical
processes of settlement. The major roads
and the landscape to the south of Santarém
have a complex structure of agricultural
settlements. Recent trend of small lot
property aggregation into large industrial
farms for export commodities.

Deforestation began in the late
1970s with the construction of
BR-163 highway and expanded
rapidly, especially after the
establishment of Lucas County
in 1982, resulting in a large area
conversion from primary forest
and savanna to agricultural
lands.

Population growth Altamira has a long history as a
riverine settlement. Population in
this Altamira county has grown
from 1,000 in the early 1970′s to
over 85,000 by 2000. The urban
population in 2010 reached 76,695

Santarém was an important pre-historic
occupation area. It is the third largest city
in the Brazilian Amazon, after Belem and
Manaus. The urban population in 2010
reached up to 204,129.

Lucas has a short-term history
with relatively small urban
extent, but the urban extent has
grown quickly. The urban
population in 2010 was 42,068.

Property Patterns
Homogeneous -Rectangular
shaped Lots – Average 100 ha.

Heterogeneous – Often “irregularly”
shaped lots – Average 44 ha; Trend of
small holdings being aggregated into large
farms for export of soy, rice, and corn.

Mixture of mostly fairly
homogenous properties and a
small number of relatively large
holdings, Average 297 ha.

Length of dry months 3-4 months 4-6 months 6-7 months

Census Sectors 35 sectors with average size of
10,756 ha 42 sectors with average size of 8,277 ha 6 sectors with average size of

60,111 ha
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Table 2
Landsat images and other data sources used in research

Datasets Altamira Santarém Lucas

Landsat images

Landsat 5 TM image on 20 July 1991 with
Earthsat Orthorectified image.

Landsat 5 TM (L1G) on 11 July 1991, but
clouds/shadows were replaced with a TM
image (L1G) on 25 June 1991

Landsat 5 TM image (from
INPE) on 9 August 1990

Landsat 7 ETM+ images (L1G) on 4 July
2000, but clouds/shadows were replaced
with two TM images on 19 August 1999
(L1G) and 22 August 2003 (L1G).

Landsat 5 TM (L1G) on 2 August 1999, but
clouds/shadows were replaced with an ETM
+ image (L1G) on 10 August 1999

Landsat 7 ETM+ image
(L1G) on 10 August 1999

Landsat 5 TM image (from INPE) on 2
July 2008.

Landsat 5 TM image (from INPE) on 29
June 2010, but clouds/shadows were
replaced with a TM image (L1G) on 12 July
2009

Landsat 5 TM image (from
INPE) on 22 May 2008

QuickBird image 26 September 2008. 25 June 2008 20 June 2008

Field work 2009 1999 and 2010 2009

Census data The 2010 Brazilian census sector data were used

Note: TM represents Landsat Thematic Mapper sensor, and ETM+ represents Landsat Enhanced Thematic Mapper Plus sensor. The Landsat
images from USGS are L1G products with good geometric accuracy, but the images from INPE have geometric errors that require conducting
image-to-image registration using L1G products as reference images.
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