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a b s t r a c t

Landslides in mountainous areas render major damages to residential areas, roads, and farmlands. Hence,
one of the basic measures to reduce the possible damage is by identifying landslide-prone areas through
landslide mapping by different models and methods. The purpose of conducting this study is to evaluate
the efficacy of a combination of two models of the analytical network process (ANP) and fuzzy logic in
landslide risk mapping in the Azarshahr Chay basin in northwest Iran. After field investigations and a
review of research literature, factors affecting the occurrence of landslides including slope, slope aspect,
altitude, lithology, land use, vegetation density, rainfall, distance to fault, distance to roads, distance to
rivers, along with a map of the distribution of occurred landslides were prepared in GIS environment.
Then, fuzzy logic was used for weighting sub-criteria, and the ANP was applied to weight the criteria.
Next, they were integrated based on GIS spatial analysis methods and the landslide risk map was pro-
duced. Evaluating the results of this study by using receiver operating characteristic curves shows that
the hybrid model designed by areas under the curve 0.815 has good accuracy. Also, according to the
prepared map, a total of 23.22% of the area, amounting to 105.38 km2, is in the high and very high-risk
class. Results of this research are great of importance for regional planning tasks and the landslide
prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the
study area.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Landslides as a type of mass movements involve slow or fast
movement of soil and stone materials, or both on the slopes
downwards, under the force of gravity (Crosta and Clague, 2009).
Landslides are known as one themost common geological disasters
which cause damages and casualties worldwide (Bianchini et al.,
2016; Bui et al., 2012; IGOS, 2004; Shahabi et al., 2014; Wang
et al., 2016). While landslide occurrences include 9% of all natural
disasters in the past decade, it is expected that this trend will in-
crease in the coming years, due to the development of urbanization,
deforestation and climate change (Yilmaz, 2009; Zare et al., 2013).
The damaging effects of landslides include loss of life, rapid soil
loss, and degradation of agricultural lands, gardens, roads, and
engineering structures (Hassanzadeh Nafuti et al., 2012). Given the
extent of the damages mentioned, it was explicitly stated that the
cost of studying this phenomenon is much less than the damage.
di Gheshlaghi).
Therefore, to understand the susceptibility of hill slopes, landslide
risk zones in different regions are addressed (Shadfar et al., 2007).
Landslide susceptibility has been defined as the probability of a
landslide occurring in a region based on local terrain conditions
(Brabb, 1984; Ciampalini et al., 2016). Zoning and preparation of a
landslide susceptibility map is a complex process (Brabb, 1991;
Chen et al., 2016) that shows possible and sensitive areas to land-
slides through some effective factors by generalizing the occur-
rence of slope failures (Akgun, 2012; Van Westen, 2000). Landslide
susceptibility maps provide important and valuable information for
predicting landslides hazards which include an indication of the
time scale within which particular landslides are likely to occur in
the future (Atkinson and Massari, 2011).

In light of GIS based landslide risk mapping, the multicriteria
decision analysis (MCDA) methods provides a rich collection of
procedures and techniques for structuring decision problems and
designing, evaluating and prioritizing alternative decisions
(Feizizadeh and Blaschke, 2014; Feizizadeh and Kienberger, 2017).
MCDA has been widely applied to support environmental planning
processes, whereMCDA can provide a transparent combination of a
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Fig. 1. Location of the study area and distribution of landslide points.
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problem from different perspectives and a systematic assessment
of the alternatives (Huang et al., 2011; Keisler and Linkov, 2014;
Kiker et al., 2005; Mustajoki and Marttunen, 2017; Voinov et al.,
2016). There has been a vast body of research around the world
on evaluation of landslide mapping based on GIS-MCDA methods
(Feizizadeh and Blaschke, 2013; Feizizadeh et al., 2014a, 2014b).
The GIS-MCDAmethods andmodels used by researchers to prepare
a landslide risk map are the analytical network process (ANP)
(Abedi Gheshlaghi et al., 2016; Neaupane et al., 2008; Neaupane
and Piantanakulchai, 2006; Roostaei et al., 2015), fuzzy methods
(Anbalagan et al., 2015; Bibi et al., 2016; Bui et al., 2015;
Pourghasemi et al., 2012; Tangestani, 2009; Vakhshoori and Zare,
2016), neuro-fuzzy hybrid methods (Aghdam et al., 2016; Dehnavi
et al., 2015; Pradhan, 2013; Vahidnia et al., 2010), and logistic
regression (Ayalew and Yamagishi, 2005; Bui et al., 2016; Demir
et al., 2015; Devkota et al., 2013; Sangchini et al., 2016; Umar
et al., 2014).

The ANP is one of the GIS-MCDA methods, which has been
successfully applied to many decision maker systems. Even though,
the ANP is well known approach in GIS-MCDA domain, the method
face error for its inability to adequately handle the inherent un-
certainties and imprecisions associated with expert based criteria
ranking and evaluating the decision-maker’s perception to crisp
numbers. In order to deal with this issue, the ANP can be integrated
with fuzzy logic methods to provide a framework for minimize the
inherent uncertainty and making use the advantages of fuzzy
membership functions (FMFs) for assessing criteria weights and
improving the reliability of the results (Feizizadeh et al., 2014b).
Technically speaking, fuzzy set theory employs the membership
function which represents the degree of membership value with
respect to a particular attribute of interest. Within this process, the
attribute of interest is generally measured over discrete intervals
and the membership function which respectively inscribed as a
table relating map classifications to fuzzy membership values
(Pradhan, 2011a, b). It is widely known that fuzzy is straightforward
to be understood and implemented. In addition, this method so far
has been successfully integrated into a number of GIS-MCDA. The
integration of GIS-based MCDA and fuzzy set theory has applied to
model imprecise objectives in a variety of research areas (Aydin
et al., 2013; Chang et al., 2008; Feizizadeh et al., 2014b). Review
of the research background indicated that most published research
has used the ANP and fuzzy logic as a single method. Some re-
searchers also compared results of fuzzy based GIS-MCDA with
traditional approaches to get better and more accurate in results
(Feizizadeh et al., 2014b; Malmir et al., 2016; Razavi Toosi and
Samani, 2016; Valmohammadi et al., 2016). By considering the re-
sults of early researches, in the reminder of this article, we aim to
apply GIS based Fuzzy-ANP for landslide risk mapping and im-
proves the accuracy of the results while measuring and minimizing
the uncertainties associated with the traditional ANP methods.
Therefore, the purpose of this study is to devolve landslide risk
mapping by applying a combination of two models of the ANP and
fuzzy logic to identify high-risk areas as well as to take preventive
measures to avoid or reduce landslide risks in the Azarshahr Chay
basin which is highly susceptible for landslide risk.

2. Material and methods

2.1. Study area

The Azarshahr Chay basin is one of the sub-basins of Sahand
that is located in geographic coordinates of 37�370 to 37�480 north
latitude and 45�490 to 46�200 east longitude. The basinwith an area
of 453.93 km2 is in east Azerbaijan Province. This basin is sur-
rounded by the Azarshahr, Osku, and Ajab Shir Counties. Its
maximum altitude is 3300 m and the minimum altitude is 1239 m
above sea level. The Azarshahr River is the main river of this basin
(Fig. 1). This area is one of the drainage basins of the Sahand
Mountain because of its steep slopes, non-consolidated soil and
surface materials, lack of full-scope protection by vegetation, and
active different processes over the year. Unprincipled manipulation
by humans in recent decades has made it as one of the areas prone
to mass movements (Bayati khatibi et al., 2011). Landslides are
common in the Azarshahr Chay basin, and the complexity of the
geological structure in the associated lithological units, comprised
of several formations, causes volcanic hazards, earthquakes, and
landslides (Feizizadeh and Blaschke, 2014). A landslide inventory
database for the East Azerbaijan Province lists 79 known landslide
events (Feizizadeh et al., 2013a; MNR, 2010). The area’s geology is
very complex and the lithological units comprise several forma-
tions causing volcanic hazards, earthquakes and landslides. This
geophysical setting makes slopes of this area potentially vulnerable
to landslides and mass movements such as rock fall, creeps, flows,
topples and landslides (Alayi Taleghani, 2009; Feizizadeh et al.,
2013b) According to Feizizadeh and Blaschke (2013) and litholog-
ical units and as well as the field observations statements, most of
the landslide event can be considered as rotational landslide.
2.2. Dataset

In this research, for landslide risk mapping by literature review,
data on field studies and expert opinions in this field relating to
factors affecting the landslide including slope, slope aspect, alti-
tude, lithology, land use, vegetation density derived from normal-
ized density of vegetation index (NDVI), rainfall, distance to fault,
distance to roads, and distance to rivers determine has been
collected (Fig. 2). These data include geological maps of 1:100,000
scale, topography maps of 1:25,000 scale, the map of land capa-
bility of East Azerbaijan province, digital elevation model (DEM)
obtained from SRTM with a resolution of 30 m, 10-year climatic
data (2005e2015) of the Iranian meteorological organization
related to the Tabriz, Sahand, Ajabshir, Bonab, and Maragheh sta-
tions along with eight Landsat satellite images in 2016.

The above-mentioned dataset was processed by using the
software ENVI and ArcGIS to create and convert as criteria for input
of GIS based Fuzzy-ANP models. Hence, for layers of slope, slope



Fig. 2. Landslide conditioning factor maps (a) Slope degree; (b) Slope aspect; (c) Altitude; (d) Lithology; (e) Land use; (f) Distance to river; (g) Distance to road; (h) Distance to fault;
(i) NDVI; and (j) Rainfall.

Table 1
Lithology of the Azarshahr chay basin.

Lithological units code Description

Qsd Salt-clay deposits
Ngct Tuff breccia with intercalations of

Conglomerate and sandstone
PLQash Volcanic ashes with block, lahar and welded

breccia (Pelean)
PLQd Dacitic andesite
Qtr Travertine
Q2 Old terraces and alluvial fan deposits
Ngb Volcanic breccia with pyroxen andesite
Q3 Young terraces and alluvial fan deposits, locally

including cultivated
JI Limestone and dolomitic limestone
Jd Lightgrey to whitish, thin to thick-bedded

ammonite and belemnite bearing argillaceous
limestone (Dalichai Formation)

Kl
l Grey to dark grey. orbitolina bearing,

argillaceous-limestone and limestone
JKl Yellow brecciated limestone and light-grey

massive limestone (Lar Formation)
Kc

l Red conglomerate, sandstone and siltstone

H. Abedi Gheshlaghi, B. Feizizadeh / Journal of African Earth Sciences 133 (2017) 15e24 17
aspect, and altitude classes images of DEM with a resolution of
30 m have been used; for land use layer mapping, land capability in
east Azerbaijan province and topographic maps have been used; for
the layer of lithology, geological maps (Table 1) have been used; for
the layer distance to fault, distance to roads, and distance to rivers,
topographicmaps have been used; and for the rainfall layer, climate
data of the country’s meteorological organization has been used;
and to convert point data to surface data and raster mapping, the
kriging interpolation method has been applied for more accuracy
than other interpolation methods.
To prepare a layer of vegetation, the vegetation index NDVI was
applied. This index is one of the simplest and most frequently used
indices in the study of vegetation. For this to happen, bands four
and five of Landsat 8 satellite images have been used. Values of this
index lie between þ1 and �1. Negative values indicate water areas;
near-zero values usually indicate bare surfaces of stone, sand or
snow; while values between þ0.2 and þ0.4 show shrub and
grassland coverage, and values close to þ1 of the index NDVI
represent dense and congested forests (Schlundt et al., 2011). The
NDVI is defined as:

NDVI ¼ IR � R
IR þ R

(1)

where IR is near-infrared spectral reflectance, R is red spectral
reflectance, and NDVI is the normalized difference vegetation
index.

Further, it should be explained that to determine the landslide
points in the study area, Landsat 8 satellite images related to OLI
sensor, software Google Earth, and extensive field surveys have
been used in this study.
2.3. Fuzzing of the layers

Fuzzy logic was proposed as fuzzy in the computing set theory
by Lotfi Zadeh in 1965 (Zadeh, 1965). This theory can formulate
many concepts and variables that are inaccurate and ambiguous, as
in reality, in terms of mathematics and pave the way for reasoning,
inference, and decision-making under uncertainty conditions
(Taheri, 2006). Fuzzy logic is a method that shows the correctness
of anything by a number between 0 and 1. Fuzzy logic provides a
grey look into the real world, seeking to draw external truth
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completely and as it is. For example, if black is 0 and white is 1, then
grey will be a number between 0 and 1 (Karam and Yaghoob Nejad
Asl, 2013).

One of the ways of doing this is by using the frequency ratio.
The frequency ratio is defined as:

FRij ¼
NpðSXiÞ

�Pn
i¼1SXi

Np
�
SXj

�.Pm
j¼1SXj

(2)

where NpðSXiÞ is used to represent the total number of landslide
occurrence pixels in class i of landslide occurrence factor X; NpðSXjÞ
is used to represent the total number of pixels in landslide occur-
rence factor Xj; n is the number of classes in the landslide occur-
rence factor Xi; m is the number of landslide occurrence factors.

After the calculation of the frequency ratio, the values obtained
by using the following equation are normalized and fuzzy mem-
bership values are obtained.

mij ¼ FRij
�
maxi

�
FRij

�
(3)

where mij is the fuzzy membership value of class i of parameter j.
In this study, the frequency ratio was used to determine the

degree of fuzzy membership. And using these values of fuzzy
membership, any criteria fuzzy map was prepared.
2.4. Prioritize and calculate the final weight of criteria in ANP
model

The ANP, as one of the multi-criteria decision-making tech-
niques, was proposed to overcome problems of dependence and
feedback between criteria and sub-criteria in 1996 by Saaty (Hung,
2011). The ANP considers every topic and problem as a ‘network’ of
criteria, sub-criteria, and options that have gathered together in
clusters. All elements in the network can communicate with each
other in any way. Using quantitative and qualitative criteria at the
same time, flexibility and consistency in judgments are features of
the ANP method (Zebardast, 2011).

The final weight calculation process for landslide risk mapping
in the ANP model is as follows:

The 1st step: Create the subject model and structure: The sub-
ject is clearly expressed and its network structure is formed by
decision-makers and through the DEMATEL mathematical method.

The 2nd step: Form binary comparison matrices and extract
priority vectors: This step is like the analytical hierarchy process so
that by control criterion and by experts, the importance or priority
of criteria or sub-criteria is determined within the range of 1e9
(and/or with reverse numerical value) (Table 2).

Then, judgments’ inconsistency is measured by the consistency
rate. If this ratio is smaller than 0.1, judgments’ consistency is
acceptable, and, otherwise, the judgments should be revised.
Table 2
Scale of relative importance (Neaupane and Piantanakulchai, 2006; Saaty, 1980).

Definition Numerical ratin

Equal rating 1
Moderate rating 3
Strong rating 5
Very strong or demonstrated rating 7
Extreme rating 9

Intermediate ratings between adjoining scale values 2, 4, 6 and 8
Opposites Reciprocals of a
By the following equations, the consistency index and rate can
be calculated.

CI ¼ lmax � n
n� 1

(4)

CR ¼ CI
RI

(5)

where CR is consistency ratio, CI is the compatibility index pair wise
comparison matrix, lmax is the maximum eigenvalue of the judg-
ment matrix, RI is the random index and n is the number of
compared components in matrix.

After judgments’ consistency, it is time to determine the co-
efficients of the significance of criteria. For that purpose, a common
method called special vector method (in accordance with the
following Eq.) is used to determine the priority vector of matrices.

AW ¼ lMAXW (6)

where A is the pair-wise comparison matrix of criteria, W repre-
sents eigenvector and lmax is the maximum eigenvalue of the
judgment matrix.

The 3rd step: Form Super Matrix: The super matrix is used to
show the effect of a cluster with other clusters (representing
external communications), and/or the effect of elements within
clusters (representing interconnections).

The general form of a ‘supermatrix’ can be shown as follows
(Saaty, 2008; Saaty and Takizawa, 1986):

(7)

where Cm denotes the mth cluster, emn denotes the nth element in
mth cluster and Wij is the principle eigenvector of the influence of
g Explanation

Two activities contribute equally to the objective
Attribute is slightly favored over another
Attribute is strongly favored over another
Attribute is very strongly favored over another
The evidence favoring one attribute over another is of the
maximum possible order of affirmation
When compromise is needed

bove A logical assumption



Table 3
Frequency ratio and fuzzy membership values for causative factors.

Factor Class No. of pixels
in domain

Percentage
of domain

No. of landslide
pixels

Percentage
of landslide

Frequency
ratio

Fuzzy membership
values

Slope degree (�) 0e5 17,079 30.48 7 8.86 0.290 0.136
5e15 22,376 39.93 25 31.65 0.792 0.372
15e25 12,427 22.18 36 45.57 2.058 0.965
25e35 3665 6.54 11 13.92 2.132 1.000
>35 493 0.88 0 0.00 0.000 0.000

Slope aspect (�) Flat (�1) 1604 2.86 0 0.00 0.000 0.000
North (0e22.5); (337.5e360) 8893 15.87 25 31.65 1.997 1.000
Northeast (22.5e67.5) 6231 11.12 8 10.13 0.911 0.456
East (67.5e112.5) 3142 5.61 2 2.53 0.451 0.226
Southeast (112.5e157.5) 2686 4.79 1 1.27 0.264 0.132
South (157.5e202.5) 4995 8.91 1 1.27 0.142 0.071
Southwest (202.5e247.5) 8215 14.66 11 13.92 0.950 0.476
West (247.5e292.5) 10,384 18.53 17 21.52 1.162 0.582
Northwest (292.5e337.5) 9890 17.65 14 17.72 1.004 0.503

Altitude (m) 1239e1500 17,682 31.55 0 0.00 0.000 0.000
1500e2000 17,391 31.03 10 12.66 0.408 0.024
2000e2500 15,089 26.93 26 32.91 1.223 0.071
2500e3000 4819 8.60 18 22.78 2.656 0.155
>3000 1059 1.89 25 31.65 17.127 1.000

Lithology Qsd 7639 13.63 0 0.00 0.000 0.000
Ngct 234 0.42 0 0.00 0.000 0.000
PLQash 7810 13.94 23 29.11 2.092 0.291
PLQd 19,691 35.14 34 43.04 1.225 0.171
Qtr 84 0.15 0 0.00 0.000 0.000
Q2 1352 2.41 0 0.00 0.000 0.000
Ngb 446 0.80 0 0.00 0.000 0.000
Q3 309 0.55 0 0.00 0.000 0.000
JI 215 0.38 0 0.00 0.000 0.000
Jd 125 0.22 0 0.00 0.000 0.000
Kl

l 7420 13.24 0 0.00 0.000 0.000
JKl 8822 15.74 3 3.80 0.241 0.034
Kc

l 1893 3.38 19 24.05 7.182 1.000
Land use Agricultural land 13,189 23.53 24 30.38 1.291 1.000

Orchard land 2967 5.29 2 2.53 0.478 0.370
Grass land 32,805 58.54 45 56.96 0.973 0.753
Barren land 6463 11.53 8 10.13 0.878 0.680
Cultivation and built-up area 616 1.10 0 0.00 0.000 0.000

Distance to river (m) 0e200 12,527 22.35 16 20.25 0.906 0.483
200e400 8788 15.68 11 13.92 0.888 0.473
400e600 7815 13.95 9 11.39 0.817 0.435
600e800 7572 13.51 20 25.32 1.876 1.000
>800 19,338 34.51 23 29.11 0.844 0.450

Distance to road (m) 0e200 10,498 18.73 2 2.53 0.135 0.079
200e400 6546 11.68 2 2.53 0.216 0.127
400e600 5399 9.63 3 3.80 0.394 0.231
600e800 4805 8.57 3 3.80 0.443 0.260
>800 28,792 51.38 69 87.34 1.702 1.000

Distance to fault (m) 0e1000 2501 4.46 10 12.66 2.844 1.000
1000e2000 4623 8.25 10 12.66 1.536 0.540
2000e3000 6190 11.05 24 30.38 2.757 0.970
3000e4000 6926 12.36 21 26.58 2.154 0.758
>4000 35,800 63.88 14 17.72 0.277 0.097

NDVI (-0.09) e 0.2 46,871 83.64 71 89.87 1.075 1.000
0.2e0.4 7357 13.13 8 10.13 0.771 0.718
>0.4 1812 3.23 0 0.00 0.000 0.000

Rainfall (mm) 221e227 9919 17.70 5 6.33 0.357 0.095
227e230 13,308 23.75 9 11.39 0.479 0.128
230e234 16,431 29.32 12 15.19 0.518 0.138
234e239 9170 16.36 15 18.99 1.161 0.309
>239 7212 12.87 38 48.10 3.752 1.000
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the elements compared in the ith cluster to the jth cluster (Toosi
and Samani, 2014; Yang and Tzeng, 2011).

To form the super matrix and extract components’ final prior-
ities, all initial priority vectors obtained from binary comparison
matrices are entered into the column matrix (Yüksel and
Dagdeviren, 2007). The result of this process is the unweighted
super matrix. Then, to calculate the weighted super matrix, cluster
super matrix data is multiplied by the unweighted super matrix
and normalized.
After calculating the weighted super matrix, the limited super
matrix is calculated (Eq. (2)).

WL ¼ lim
k/∞

W2Kþ1 (8)

whereWL is the limit supermatrix,W is theweighted supermatrix,
and k is the exponent determined by iteration.

In fact, similar to the process of Markov chains with the power of
the weighted super matrix, the final matrix is convergent. By doing



Fig. 3. Membership functions and fazzy maps of the considered factors (a) Slope degree; (b) Slope aspect; (c) Altitude; (d) Lithology; (e) Land use; (f) Distance to river; (g) Distance
to road; (h) Distance to fault; (i) NDVI; and (j) Rainfall.
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this process, numbers in the rows of the limited super matrix after
normalization can be introduced as the final weights of the criteria.
Fig. 4. Network structure for the landslide risk.
3. Results

In this study, fuzzy logic was applied to derive the sub-criteria
weights. For this purpose, by using frequency ratio, fuzzy mem-
bership values were calculated for criteria, and the value of each
class of criteria was determined within the range of 0 and 1. Hence,
levels with the greatest impact on landslides’ occurrences have the
highest value, which is 1, and levels with the least impact on
landslides’ occurrences have the lowest value, which is 0 (Table 3).
Then, using the calculated fuzzy membership functions, a raster
map of each criterion was prepared in a fuzzy form by the ArcGIS
software. Fig. 3 shows the radar map and the graph of fuzzy
membership functions of each of the criteria effective on landslides’
occurrences. In doing so, weighting process was applied based on
the ANP method. For this purpose, according to the study subject, a
three-layer network model comprising the target layer, clusters,
and criteria was designed and organized. In the model, clusters and
internal elements of each cluster communication is marked by an
arrow (Fig. 4). Then, a pair comparison of clusters and internal
elements was done by using from the DEMATEL technique pre-
pared by experts. Following this, three super matrices -



Table 4
Weights of each effective factor of landslide risk.

Clusters Factors Weights

Environmental Factors Rainfall (mm) 0.12,959
Distance to road(m) 0.05025
Distance to river(m) 0.05611
NDVI 0.10,103
Land use 0.09741

Geomorphological Factors Slope degree (�) 0.14,567
Slope aspect (�) 0.07903
Altitude 0.09701

Geological Factors Lithology 0.16,635
Distance to fault(m) 0.07755
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unweighted, weighted, and limited - were obtained, along with the
coefficients of each element contributing landslide (Table 4). After
the completion of pairwise comparisons, the consistency rate was
achieved at 0.03419, which is very low and totally acceptable.

With the extraction of coefficients of factors’ affecting landslide
occurrence, the coefficients are applied by the Raster Calculate
function in ArcGIS software on layers, and, finally, the landslide risk
mapwas obtained (Fig. 5). Themapwas classified in five risk classes
of very high, high, medium, low, and very low. How to apply the
coefficients to the factors is given in the following:

Landslide Risk Map ¼ (Slope degree * 0.14567) þ (Slope aspect *
0.07903) þ (Altitude * 0.09701) þ (Lithology * 0.16635) þ (Land use
* 0.09741) þ (Distance to river * 0.05611) þ (Distance to road *
0.05025) þ (Distance to fault * 0.07755) þ (NDVI *
0.10103) þ (Rainfall * 0.12959).

Examining the zone map of landslide risks shows that 5.18%, 18/
04%, 28/05%, 30.46%, and 18.27%, respectively, of the Azarshahr
Chay basin is in classes: very high, high, medium, low, and very low
(Fig. 6). Also, east and southeast areas of the basin have high po-
tential of landslides; west and northwest areas have the least po-
tential of fire, which is because of high steep, high altitude, and high
rainfall in east and southeast area and low slope, low altitude, low
rainfall in west and northwest areas.

4. Validation and comparison of the landslide risk mapping

In landslide risk modelling, the most important part is to
perform validation of the prediction results (Pourghasemi et al.,
2014). The receiver operating characteristic (ROC) curve is a
graphical method for evaluating the amount of trade between
Fig. 5. Landslide risk
sensitivity and specificity (Althouse, 2016); it is a graphical chart
that is made by using the true positive rate (sensitivity) on the X
axis and a false positive rate (1 - specificity) on the Y axis by
different thresholds (Altman and Bland, 1994). For this purpose, the
landslide points are randomly split into two groups, one for the risk
analysis (sensitivity) and one for validation (specificity). Thus, the
ROC curve allows us to examine and compare the sensitivity and
specificity at any point on the curve. Values of areas under the curve
(AUC) vary from 1 to 0.5 and can be categorized as follows:
1e0.9 ¼ excellent, 0.8e0.9 ¼ very good; 0.7e0.8 ¼ good;
0.6e0.7 ¼ average; 0.5e0.6 ¼ poor (Pradhan and Lee, 2010). If the
area under the curve is closer to 1, the performancewould be better.
In this study, AUC and standard error values were obtained as 0.815
and 0.033, respectively, which represent a very good performance
of the method used in landslide risk mapping (Fig. 7).

The predictive value of a landslide risk map depends not only on
scale but also on the accuracy and completeness of the landslide
inventory map and the different factor maps from which it is
derived (Choi et al., 2012). The hybrid method used in compared to
other methods such as: analytical hierarchy process (Intarawichian
and Dasananda, 2010; Kayastha et al., 2013) and logistic regression
(Lee, 2004, 2005), the shows that have accuracy relatively high for
landslide mapping.

5. Discussion

Landslide mapping is an important step in the management and
prevention of landslides in landslide-prone areas. The landslide
susceptibility maps provide fundamental knowledge of the effec-
tive and causes factors on landslide occurrence. Obviously, such
information can be helpful, in risk management and its mitigation
measures (Pourghasemi et al., 2013). Based on this assumption, the
main objective of this study was to develop a landslide risk map by
applying an integrated approach of fuzzy logic and the ANP tech-
nique. For this purpose, the frequency ratio was used and fuzzy
membership values for each of the criteria used in landslide risk
mapping were calculated, while the fuzzy map of each of themwas
prepared. Based on the results, we can conclude that the parame-
terization of fuzzy-ANP approach requires a full understanding of
how the factors’ tradeoffs against each other determine the
resulting uncertainty. Within this approach, a Fuzzy-ANP was
employed to determine the criteria weightings from subjective
judgments of decision-making domain experts. This Fuzzy-ANP
approach includes careful selection and standardization of
zonation map.



Fig. 6. The distribution of area in different landslide risk classes.
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landslide-related criteria and weighting procedures using objective
methods, which determine the criteria weights by solving mathe-
matical models without any consideration of the decision maker’s
preferences (as is conventional in subjective methods). The results
confirm that the integration of fuzzy set theory with ANP can result
in high-reliability landslide susceptibility maps. Comparing results
of this research to similar research indicated the integration
approach of Fuzzy-MCDA could minimize the chance of error and
optimize the accuracy of research (Feizi et al., 2017; Feizizadeh
et al., 2013a, 2014b; Pandey and Kumar, 2017; Roodposhti et al.,
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Fig. 7. ROC curve of the
2014; Sarkar et al., 2017).
In terms of the considered criteria, examining final weights

extracted from the ANP showed that for the risk lithology of
landslide occurrence by a factor of 0.17 and slope by a factor of 0.15,
which have the highest significance and effect. In contrast, the
distance to roads by a factor of 0.05 and the distance to rivers by a
factor of 0.06 are less important than other factors. According to the
zoning map of landslide risks, zones with a very high and high-risk
of landslides in east and southeast area have been studied. Evalu-
ating the results achieved in this research by using the ROC curve
indicate that the combined method used with the area under the
curve 0.815 had very good accuracy in landslide risk mapping.
Owing to the high percentage of sliding zones in the Azarshahr
Chay basin, which, in two classes of very high and high forms,
23.22% of the basin area that is necessary to minimize the risk of
landslide occurrence by taking action such as reducing the slope in
different parts of the basin, stabilization by using the embankment
method and increase vegetation.

6. Conclusion and future work

Our research aimed to integrate fuzzy set theory with ANP-
MCDA for landslide mapping. We introduced an approach that in-
tegrates fuzzy set theory and information theory algorithms which
could be a useful geospatial tool for integrating multiple features/
attributes that affect the landslide mapping process. In conclusion,
the work has explored an integrated approach for combining
spatial data in a fuzzy-ANP based multi-criteria evaluation of
landslide mapping. The approach described could significantly
improve the results of GIS-MCDA based modelling. Based on the
results achieved from this research, future research is foreseen,
which will include the application of the ANP and spatially explicit
reliability models for spatial sensitivity and uncertainty analyses of
GIS-MCDA. Our future work will include applying the neural net-
works and comparing with frequency ratio and bivariate logistic
regression modelling for landslide risk mapping. We also aim to
study the functionality of these approaches by assessing their
1 1 1 1 1 1

de / AUC=0.815

landslide risk map.
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results through certainty analyses methods. Finally, we conclude
the importance of accuracy in landslide susceptibility maps, for
variety of applications especially when they are used as a basis for
decision-making plans in light of reducing and mitigating the
further hazards. The information provided by these maps shall help
citizens, planners, and engineers to reduce losses caused by exist-
ing and future landslides by means of prevention, mitigation, and
avoidance.
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